Числа. Действительные числа

Натуральные числа

Числа, используемые при счете называются натуральными числами. Например, $1,2,3$ и т.д. Натуральные числа образуют множество натуральных чисел, которое обозначают $N$ .Данное обозначение исходит от латинского слова naturalis- естественный.

Противоположные числа

Определение 1

Если два числа отличаются только знаками, их называют в математике противоположными числами.

Например, числа $5$ и $-5$ противоположные числа, т.к. отличаются только знаками.

Замечание 1

Для любого числа есть противоположное число, и притом только одно.

Замечание 2

Число нуль противоположно самому себе.

Целые числа

Определение 2

Целыми числами называют натуральные, противоположные им числа и нуль.

Множество целых чисел включает в себя множество натуральных и противоположных им.

Обозначают целые числа $Z.$

Дробные числа

Числа вида $\frac{m}{n}$ называют дробями или дробными числами. Так же дробные числа можно записывать десятичной форме записи, т.е. в виде десятичных дробей.

Например:$\ \frac{3}{5}$ , $0,08$ и Т.Д.

Так же, как и целые, дробные числа могут быть как положительными, так и отрицательными.

Рациональные числа

Определение 3

Рациональными числами называется множество чисел, содержащее в себе множество целых и дробных чисел.

Любое рациональное число, как целое, так и дробное можно представить в виде дроби $\frac{a}{b}$, где $a$- целое число, а $b$- натуральное.

Таким образом, одно и то же рациональное число можно записать разными способами.

Например,

Отсюда видно, что любое рациональное число может быт представлено в виде конечной десятичной дроби или бесконечной десятичной периодической дроби.

Множество рациональных чисел обозначается $Q$.

В результате выполнения любого арифметического действия над рациональными числами полученный ответ будет рациональным числом. Это легко доказуемо, в силу того, что при сложении, вычитании, умножении и делении обыкновенных дробей получится обыкновенная дробь

Иррациональные числа

В ходе изучения курса математики часто приходится сталкиваться в решении с числами, которые не являются рациональными.

Например, чтобы убедиться в существовании множества чисел, отличных от рациональных решим уравнение $x^2=6$.Корнями этого уравнения будут числа $\surd 6$ и -$\surd 6$. Данные числа не будут являться рациональными.

Так же при нахождении диагонали квадрата со стороной $3$ мы применив теорему Пифагора получим, что диагональ будет равна $\surd 18$. Это число также не является рациональным.

Такие числа называются иррациональными.

Итак, иррациональным числом называют бесконечную десятичную непериодическую дробь.

Одно из часто встречающихся иррациональных чисел- это число $\pi $

При выполнении арифметических действий с иррациональными числами получаемый результат может оказаться и рациональным, так и иррациональным числом.

Докажем это на примере нахождения произведения иррациональным чисел. Найдем:

    $\ \sqrt{6}\cdot \sqrt{6}$

    $\ \sqrt{2}\cdot \sqrt{3}$

Решениею

    $\ \sqrt{6}\cdot \sqrt{6} = 6$

    $\sqrt{2}\cdot \sqrt{3}=\sqrt{6}$

На этом примере видно, что результат может оказаться как рациональным, так и иррациональным числом.

Если в арифметических действиях участвуют рациональное и иррациональные числа одновременно, то в результате получится иррациональное число (кроме, конечно, умножения на $0$).

Действительные числа

Множеством действительных чисел называется множество содержащее множество рациональных и иррациональных чисел.

Обозначается множество действительных чисел $R$. Символически множество действительных чисел можно обозначить $(-?;+?).$

Мы говорили ранее о том, что иррациональным числом называют бесконечную десятичную непериодическую дробь, а любое рациональное число может быт представлено в виде конечной десятичной дроби или бесконечной десятичной периодической дроби, поэтому действительным числом будет являться любая конечная и бесконечная десятичная дробь.

При выполнении алгебраических действий будут выполняться следующие правила

  1. при умножении и делении положительных чисел полученное число будет положительным
  2. при умножении и делении отрицательных чисел полученное число будет положительным
  3. при умножении и делении отрицательного и положительного чисел полученное число будет отрицательным

Также действительные числа можно сравнивать друг с другом.

Числа – виды, понятия и операции, натуральные и другие виды чисел.

Число – фундаментальное понятие математики, служащее для определения количественной характеристики, нумерации, сравнения объектов и их частей. К числам применимы различные арифметические операции: сложение, вычитание, умножение, деление, возведение в степень и другие.

Числа, участвующие в операции, называются операндами. В зависимости от производимого действия, они получают различные наименования. В общем случае схему операции можно представить следующим образом: <операнд1> <знак операции> <операнд2> = <результат>.

В операции деления первый операнд называется делимым (так называется число, которое делят). Второй (на которое делят) – делитель, а результат – частное (оно показывает, во сколько раз делимое больше делителя).

Виды чисел

В операции деления могут участвовать различные числа. Результат деления может быть целым или дробным. В математике существуют следующие виды чисел:

  • Натуральные – числа, используемые при счёте. Среди них выделяется подмножество простых чисел, имеющих всего два делителя: единицу и самого себя. Все остальные, кроме 1, называются составными и имеют более двух делителей (примеры простых чисел: 2, 5, 7, 11, 13, 17, 19 и т.д.);
  • Целые – множество, состоящее их отрицательных, положительных чисел и нуля. При делении одного целого числа на другое, частное может быть целым, либо вещественным (дробным). Среди них можно выделить подмножество совершенных чисел – равных сумме всех своих делителей (включая 1), кроме самого себя. Древним грекам было известно только четыре совершенных числа. Последовательность совершенных чисел: 6, 28, 496, 8128, 33550336… До сих пор не известно ни одного нечётного совершенного числа;
  • Рациональные – представимые в виде дроби a/b, где а – числитель, а b – знаменатель (частное таких чисел обычно не вычисляется);
  • Действительные (вещественные) – содержащие целую и дробную часть. Множество включает рациональные и иррациональные числа (представимые в виде непериодической бесконечной десятичной дроби). Частное таких чисел, как правило, представляет собой вещественное значение.

Существует несколько особенностей, связанных с выполнением арифметического действия – деления. Их понимание важно для получения правильного результата:

  • Делить на ноль нельзя (в математике данная операция не имеет смысла);
  • Целочисленное деление – операция, в результате которой вычисляется только целая часть (дробная при этом отбрасывается);
  • Вычисление остатка от целочисленного деления позволяет получить в качестве результата целое число, оставшееся после завершения операции (например, при делении 17 на 2 целая часть равна 8, остаток – 1).

Цифры в записи многозначных чисел разбивают справа налево на группы по три цифры в каждой. Эти группы называют классами . В каждом классе цифры справа налево обозначают единицы, десятки и сотни этого класса:

Первый класс справа называют классом единиц , второй - тысяч , третий - миллионов , четвёртый - миллиардов , пятый - триллионов , шестой - квадриллионов , седьмой - квинтиллионов , восьмой - секстиллионов .

Для удобства чтения записи многозначного числа, между классами оставляется небольшой пробел. Например, чтобы прочитать число 148951784296, выделим в нём классы:

и прочитаем число единиц каждого класса слева направо:

148 миллиардов 951 миллион 784 тысячи 296.

При чтении класса единиц в конце обычно не добавляют слово единиц.

Каждая цифра в записи многозначного числа занимает определённое место - позицию. Место (позицию) в записи числа, на котором стоит цифра, называют разрядом .

Счёт разрядов идёт справа налево. То есть, первая цифра справа в записи числа называется цифрой первого разряда, вторая цифра справа - цифрой второго разряда и т. д. Например, в первом классе числа 148 951 784 296, цифра 6 является цифрой первого разряда, 9 - цифра второго разряда, 2 - цифра третьего разряда:

Единицы, десятки, сотни, тысячи и т. д. иначе ещё называют разрядными единицами :
единицы называют единицами 1-го разряда (или простыми единицами )
десятки называют единицами 2-го разряда
сотни называют единицами 3-го разряда и т. д.

Все единицы, кроме простых единиц, называются составными единицами . Так, десяток, сотня, тысяча и т. д. - составные единицы. Каждые 10 единиц любого разряда составляют одну единицу следующего (более высокого) разряда. Например, сотня содержит 10 десятков, десяток - 10 простых единиц.

Любая составная единица по сравнению с другой единицей, меньшей её называется единицей высшего разряда , а по сравнению с единицей, большей её, называется единицей низшего разряда . Например, сотня является единицей высшего разряда относительно десятка и единицей низшего разряда относительно тысячи.

Чтобы узнать, сколько в числе заключается всех единиц какого-либо разряда, надо отбросить все цифры, означающие единицы низших разрядов и прочитать число, выражаемое оставшимися цифрами.

Например, требуется узнать, сколько всего сотен содержится в числе 6284, т. е. сколько сотен заключается в тысячах и в сотнях данного числа вместе.

В числе 6284 на третьем месте в классе единиц стоит цифра 2, значит в числе есть две простые сотни. Следующая влево цифра - 6, означает тысячи. Так как в каждой тысяче содержится 10 сотен то, в 6 тысячах их заключается 60. Всего, таким образом, в данном числе содержится 62 сотни.

Цифра 0 в каком-нибудь разряде означает отсутствие единиц в данном разряде. Например, цифра 0 в разряде десятков означает отсутствие десятков, в разряде сотен - отсутствие сотен и т. д. В том разряде, где стоит 0, при чтении числа ничего не произносится:

172 526 - сто семьдесят две тысячи пятьсот двадцать шесть.
102 026 - сто две тысячи двадцать шесть.

Понятие действительного числа: действительное число - (вещественное число), всякое неотрицательное или отрицательное число либо нуль. С помощью действительных чисел выражают измерения каждой физической величины .

Вещественное , или действительное число возникло из необходимости измерений геометрической и физической величин мира. Кроме того, для проведения операций извлечения корня, вычисления логарифма, решения алгебраических уравнений и т.д.

Натуральные числа образовались с развитием счета, а рациональные с потребностью управлять частями целого, то вещественные числа (действительные) используются для измерений непрерывных величин. Т.о., расширение запаса чисел, которые рассматриваются, привело к множеству вещественных чисел, которое кроме рациональных чисел состоит из других элементов, называемых иррациональные числа .

Множество действительных чисел (обозначается R ) - это множества рациональных и иррациональных чисел собранные вместе.

Действительные числа делят на рациональные и иррациональные .

Множество вещественных чисел обозначают и зачастую называют вещественной или числовой прямой . Вещественные числа состоят из простых объектов: целых и рациональных чисел .

Число, которое возможно записать как отношение, где m - целое число, а n - натуральное число, является рациональным числом .

Всякое рациональное число легко представить как конечную дробь либо бесконечную периодическую десятичную дробь.

Пример ,

Бесконечная десятичная дробь , это десятичная дробь, у которой после запятой есть бесконечное число цифр.

Числа, которые нельзя представить в виде , являются иррациональными числами .

Пример:

Всякое иррациональное число легко представить как бесконечную непериодическую десятичную дробь.

Пример ,

Рациональные и иррациональные числа создают множество действительных чисел. Всем действительным числам соответствует одна точка координатной прямой, которая называется числовая прямая .

Для числовых множеств используются обозначения:

  • N - множество натуральных чисел;
  • Z - множество целых чисел;
  • Q - множество рациональных чисел;
  • R - множество действительных чисел.

Теория бесконечных десятичных дробей.

Вещественное число определяется как бесконечная десятичная дробь , т.е.:

±a 0 ,a 1 a 2 …a n …

где ± есть один из символов + или −, знак числа,

a 0 — целое положительное число,

a 1 ,a 2 ,…a n ,… — последовательность десятичных знаков, т.е. элементов числового множества {0,1,…9}.

Бесконечную десятичную дробь можно объяснить как число, которое на числовой прямой находится между рациональными точками типа:

±a 0 ,a 1 a 2 …a n и ±(a 0 ,a 1 a 2 …a n +10 −n) для всех n=0,1,2,…

Сравнение вещественных чисел как бесконечных десятичных дробей происходит поразрядно. Например , предположим даны 2 положительны числа:

α =+a 0 ,a 1 a 2 …a n …

β =+b 0 ,b 1 b 2 …b n …

Если a 0 0, то α<β ; если a 0 >b 0 то α>β . Когда a 0 =b 0 переходим к сравнению следующего разряда. И т.д. Когда α≠β , значит после конечного количества шагов встретится первый разряд n , такой что a n ≠b n . Если a n n , то α<β ; если a n >b n то α>β .

Но при этом нудно обратить внимание на то, что число a 0 ,a 1 a 2 …a n (9)=a 0 ,a 1 a 2 …a n +10 −n . Поэтому если запись одного из сравниваемых чисел, начиная с некоторого разряда это периодическая десятичная дробь, у которой в периоде стоит 9, то её нужно заменить на эквивалентную запись, с нулем в периоде.

Арифметические операции с бесконечными десятичными дробями это непрерывное продолжение соответствующих операций с рациональными числами. Например , суммой вещественных чисел α и β является вещественное число α+β , которое удовлетворяет таким условиям:

a′,a′′,b′,b′′ Q(a′ α a′′) (b′ β b′′) (a′+b′ α + β a′′+b′′)

Аналогично определяет операция умножения бесконечных десятичных дробей.

Найдите на числовой окружности точки с данной абсциссой. Координаты. Свойство координат точек. Центр числовой окружности. От окружности к тригонометру. Найдите на числовой окружности точки. Точки с абсциссой. Тригонометр. На числовой окружности укажите точку. Числовая окружность на координатной плоскости. Числовая окружность. Точки с ординатой. Назвать координату точки. Назвать линию и координату точки.

««Производные» 10 класс алгебра» - Применение производной для исследования функций. Производная равна нулю. Найдите точки. Обобщаем информацию. Характер монотонности функции. Применение производной к исследованию функций. Теоретическая разминка. Закончите формулировки утверждений. Выберите верное утверждение. Теорема. Сравните. Производная положительна. Сравните формулировки теорем. Функция возрастает. Достаточные условия экстремума.

««Тригонометрические уравнения» 10 класс» - Значения из промежутка. X= tg х. Укажите корни. Верно ли равенство. Серии корней. Уравнение ctg t = a. Определение. Cos 4x. Найти корни уравнения. Уравнение tg t = a. Sin х. Имеет ли смысл выражение. Sin x =1. Не делай никогда того, чего не знаешь. Продолжите фразу. Сделаем выборку корней. Решите уравнение. Ctg x = 1. Тригонометрические уравнения. Уравнение.

«Алгебра «Производные»» - Уравнение касательной. Происхождение терминов. Решить задачу. Производная. Материальная точка. Формулы дифференцирования. Механический смысл производной. Критерии оценок. Функция производная. Касательная к графику функции. Определение производной. Уравнение касательной к графику функции. Алгоритм отыскания производной. Пример нахождения производной. Структура изучения темы. Точка движется прямолинейно.

«Кратчайший путь» - Путь в орграфе. Пример двух разных графов. Ориентированные графы. Примеры ориентированных графов. Достижимость. Кратчайший путь из вершины A в вершину D. Описание алгоритма. Преимущества иерархического списка. Взвешенные графы. Путь в графе. Программа “ProGraph”. Смежные вершины и рёбра. Степень вершины. Матрица смежности. Длина пути во взвешенном графе. Пример матрицы смежности. Нахождение кратчайшего пути.

«История тригонометрии» - Якоб Бернулли. Техника оперирования с тригонометрическими функциями. Учение об измерении многогранников. Леонард Эйлер. Развитие тригонометрии с XVI века до нашего времени. Ученику приходится встречаться с тригонометрией трижды. До сих пор тригонометрия формировалась и развивалась. Построение общей системы тригонометрических и примыкающих к ним знаний. Проходит время, и тригонометрия возвращается к школьникам.