Найти неопределенный интеграл от дробно рациональных функций. Интегрирование некоторых функций

ТЕМА: Интегрирование рациональных дробей.

Внимание! При изучении одного из основных приемов интегрирования: интегрирования рациональных дробей – требуется для проведения строгих доказательств рассматривать многочлены в комплексной области. Поэтому необходимо изучить предварительно некоторые свойства комплексных чисел и операций над ними.

Интегрирование простейших рациональных дробей.

Если P (z ) и Q (z ) – многочлены в комплексной области, то - рациональная дробь. Она называется правильной , если степень P (z ) меньше степени Q (z ) , и неправильной , если степень Р не меньше степени Q .

Любую неправильную дробь можно представить в виде: ,

P(z) = Q(z) S(z) + R(z),

a R (z ) – многочлен, степень которого меньше степени Q (z ).

Таким образом, интегрирование рациональных дробей сводится к интегрированию многочленов, то есть степенных функций, и правильных дробей, так как является правильной дробью.

Определение 5. Простейшими (или элементарными) дробями называются дроби следующих видов:

1) , 2) , 3) , 4) .

Выясним, каким образом они интегрируются.

3) (изучен ранее).

Теорема 5. Всякую правильную дробь можно представить в виде суммы простейших дробей (без доказательства).

Следствие 1. Если - правильная рациональная дробь, и если среди корней многочлена будут только простые действительные корни, то в разложении дроби на сумму простейших дробей будет присутствовать лишь простейшие дроби 1-го типа:

Пример 1.

Следствие 2. Если - правильная рациональная дробь, и если среди корней многочлена будут только кратные действительные корни, то в разложении дроби на сумму простейших дробей будет присутствовать лишь простейшие дроби 1-го и 2-го типов:

Пример 2.

Следствие 3. Если - правильная рациональная дробь, и если среди корней многочлена будут только простые комплексно - сопряженные корни, то в разложении дроби на сумму простейших дробей будет присутствовать лишь простейшие дроби 3-го типа:

Пример 3.

Следствие 4. Если - правильная рациональная дробь, и если среди корней многочлена будут только кратные комплексно - сопряженные корни, то в разложении дроби на сумму простейших дробей будет присутствовать лишь простейшие дроби 3-го и 4-го типов:

Для определения неизвестных коэффициентов в приведенных разложениях поступают следующим образом. Левую и правую часть разложения , содержащего неизвестные коэффициенты, умножают на Получается равенство двух многочленов. Из него получают уравнения на искомые коэффициенты, используя, что:

1. равенство справедливо при любых значениях Х (метод частных значений). В этом случае получается сколько угодно уравнений, любые m из которых позволяют найти неизвестные коэффициенты.

2. совпадают коэффициенты при одинаковых степенях Х (метод неопределенных коэффициентов). В этом случае получается система m – уравнений с m – неизвестными, из которых находят неизвестные коэффициенты.

3. комбинированный метод.

Пример 5. Разложить дробь на простейшие.

Решение:

Найдем коэффициенты А и В.

1 способ - метод частных значений:

2 способ – метод неопределенных коэффициентов:

Ответ:

Интегрирование рациональных дробей.

Теорема 6. Неопределенный интеграл от любой рациональной дроби на всяком промежутке, на котором ее знаменатель не равен нулю, существует и выражается через элементарные функции, а именно рациональные дроби, логарифмы и арктангенсы.

Доказательство.

Представим рациональную дробь в виде: . При этом последнее слагаемое является правильной дробью, и по теореме 5 ее можно представить в виде линейной комбинации простейших дробей. Таким образом, интегрирование рациональной дроби сводится к интегрированию многочлена S (x ) и простейших дробей, первообразные которых, как было показано, имеют вид, указанный в теореме.

Замечание. Основную трудность при этом составляет разложение знаменателя на множители, то есть поиск всех его корней.

Пример 1. Найти интеграл

Материал, изложенный в этой теме, опирается на сведения, представленные в теме "Рациональные дроби. Разложение рациональных дробей на элементарные (простейшие) дроби" . Очень советую хотя бы бегло просмотреть эту тему перед тем, как переходить к чтению данного материала. Кроме того, нам будет нужна таблица неопределенных интегралов .

Напомню пару терминов. О их шла речь в соответствующей теме , посему тут ограничусь краткой формулировкой.

Отношение двух многочленов $\frac{P_n(x)}{Q_m(x)}$ называется рациональной функцией или рациональной дробью. Рациональная дробь называется правильной , если $n < m$, т.е. если степень многочлена, стоящего в числителе, меньше степени многочлена, стоящего в знаменателе. В противном случае (если $n ≥ m$) дробь называется неправильной .

Элементарными (простейшими) рациональными дробями именуют рациональные дроби четырёх типов:

  1. $\frac{A}{x-a}$;
  2. $\frac{A}{(x-a)^n}$ ($n=2,3,4, \ldots$);
  3. $\frac{Mx+N}{x^2+px+q}$ ($p^2-4q < 0$);
  4. $\frac{Mx+N}{(x^2+px+q)^n}$ ($p^2-4q < 0$; $n=2,3,4,\ldots$).

Примечание (желательное для более полного понимания текста): показать\скрыть

Зачем нужно условие $p^2-4q < 0$ в дробях третьего и четвертого типов? Рассмотрим квадратное уравнение $x^2+px+q=0$. Дискриминант этого уравнения $D=p^2-4q$. По сути, условие $p^2-4q < 0$ означает, что $D < 0$. Если $D < 0$, то уравнение $x^2+px+q=0$ не имеет действительных корней. Т.е. выражение $x^2+px+q$ неразложимо на множители. Именно эта неразложимость нас и интересует.

Например, для выражения $x^2+5x+10$ получим: $p^2-4q=5^2-4\cdot 10=-15$. Так как $p^2-4q=-15 < 0$, то выражение $x^2+5x+10$ нельзя разложить на множители.

Кстати сказать, для этой проверки вовсе не обязательно, чтобы коэффициент перед $x^2$ равнялся 1. Например, для $5x^2+7x-3=0$ получим: $D=7^2-4\cdot 5 \cdot (-3)=109$. Так как $D > 0$, то выражение $5x^2+7x-3$ разложимо на множители.

Примеры рациональных дробей (правильных и неправильных), а также примеры разложения рациональной дроби на элементарные можно найти . Здесь нас будут интересовать лишь вопросы их интегрирования. Начнём с интегрирования элементарных дробей. Итак, каждый из четырёх типов указанных выше элементарных дробей несложно проинтегрировать, используя формулы, указанные ниже. Напомню, что при интегрировании дробей типа (2) и (4) предполагается $n=2,3,4,\ldots$. Формулы (3) и (4) требуют выполнение условия $p^2-4q < 0$.

\begin{equation} \int \frac{A}{x-a} dx=A\cdot \ln |x-a|+C \end{equation} \begin{equation} \int\frac{A}{(x-a)^n}dx=-\frac{A}{(n-1)(x-a)^{n-1}}+C \end{equation} \begin{equation} \int \frac{Mx+N}{x^2+px+q} dx= \frac{M}{2}\cdot \ln (x^2+px+q)+\frac{2N-Mp}{\sqrt{4q-p^2}}\arctg\frac{2x+p}{\sqrt{4q-p^2}}+C \end{equation}

Для $\int\frac{Mx+N}{(x^2+px+q)^n}dx$ делается замена $t=x+\frac{p}{2}$, после полученный интерал разбивается на два. Первый будет вычисляться с помощью внесения под знак дифференциала, а второй будет иметь вид $I_n=\int\frac{dt}{(t^2+a^2)^n}$. Этот интеграл берётся с помощью рекуррентного соотношения

\begin{equation} I_{n+1}=\frac{1}{2na^2}\frac{t}{(t^2+a^2)^n}+\frac{2n-1}{2na^2}I_n, \; n\in N \end{equation}

Вычисление такого интеграла разобрано в примере №7 (см. третью часть).

Схема вычисления интегралов от рациональных функций (рациональных дробей):

  1. Если подынтегральная дробь является элементарной, то применить формулы (1)-(4).
  2. Если подынтегральная дробь не является элементарной, то представить её в виде суммы элементарных дробей, а затем проинтегрировать, используя формулы (1)-(4).

Указанный выше алгоритм интегрирования рациональных дробей имеет неоспоримое достоинство - он универсален. Т.е. пользуясь этим алгоритмом можно проинтегрировать любую рациональную дробь. Именно поэтому почти все замены переменных в неопределённом интеграле (подстановки Эйлера, Чебышева, универсальная тригонометрическая подстановка) делаются с таким расчётом, чтобы после оной замены получить под интералом рациональную дробь. А к ней уже применить алгоритм. Непосредственное применение этого алгоритма разберём на примерах, предварительно сделав небольшое примечание.

$$ \int\frac{7dx}{x+9}=7\ln|x+9|+C. $$

В принципе, этот интеграл несложно получить без механического применения формулы . Если вынести константу $7$ за знак интеграла и учесть, что $dx=d(x+9)$, то получим:

$$ \int\frac{7dx}{x+9}=7\cdot \int\frac{dx}{x+9}=7\cdot \int\frac{d(x+9)}{x+9}=|u=x+9|=7\cdot\int\frac{du}{u}=7\ln|u|+C=7\ln|x+9|+C. $$

Для детальной информации рекомедую посмотреть тему . Там подробно поясняется, как решаются подобные интегралы. Кстати, формула доказывается теми же преобразованиями, что были применены в этом пункте при решении "вручную".

2) Вновь есть два пути: применить готовую формулу или обойтись без неё. Если применять формулу , то следует учесть, что коэффициент перед $x$ (число 4) придется убрать. Для этого оную четвёрку просто вынесем за скобки:

$$ \int\frac{11dx}{(4x+19)^8}=\int\frac{11dx}{\left(4\left(x+\frac{19}{4}\right)\right)^8}= \int\frac{11dx}{4^8\left(x+\frac{19}{4}\right)^8}=\int\frac{\frac{11}{4^8}dx}{\left(x+\frac{19}{4}\right)^8}. $$

Теперь настал черёд и для применения формулы :

$$ \int\frac{\frac{11}{4^8}dx}{\left(x+\frac{19}{4}\right)^8}=-\frac{\frac{11}{4^8}}{(8-1)\left(x+\frac{19}{4} \right)^{8-1}}+C= -\frac{\frac{11}{4^8}}{7\left(x+\frac{19}{4} \right)^7}+C=-\frac{11}{7\cdot 4^8 \left(x+\frac{19}{4} \right)^7}+C. $$

Можно обойтись и без применения формулы . И даже без вынесения константы $4$ за скобки. Если учесть, что $dx=\frac{1}{4}d(4x+19)$, то получим:

$$ \int\frac{11dx}{(4x+19)^8}=11\int\frac{dx}{(4x+19)^8}=\frac{11}{4}\int\frac{d(4x+19)}{(4x+19)^8}=|u=4x+19|=\\ =\frac{11}{4}\int\frac{du}{u^8}=\frac{11}{4}\int u^{-8}\;du=\frac{11}{4}\cdot\frac{u^{-8+1}}{-8+1}+C=\\ =\frac{11}{4}\cdot\frac{u^{-7}}{-7}+C=-\frac{11}{28}\cdot\frac{1}{u^7}+C=-\frac{11}{28(4x+19)^7}+C. $$

Подробные пояснения по нахождению подобных интегралов даны в теме "Интегрирование подстановкой (внесение под знак дифференциала)" .

3) Нам нужно проинтегрировать дробь $\frac{4x+7}{x^2+10x+34}$. Эта дробь имеет структуру $\frac{Mx+N}{x^2+px+q}$, где $M=4$, $N=7$, $p=10$, $q=34$. Однако чтобы убедиться, что это действительно элементарная дробь третьего типа, нужно проверить выполнение условия $p^2-4q < 0$. Так как $p^2-4q=10^2-4\cdot 34=-16 < 0$, то мы действительно имеем дело с интегрированием элементарной дроби третьего типа. Как и в предыдущих пунктах есть два пути для нахождения $\int\frac{4x+7}{x^2+10x+34}dx$. Первый путь - банально использовать формулу . Подставив в неё $M=4$, $N=7$, $p=10$, $q=34$ получим:

$$ \int\frac{4x+7}{x^2+10x+34}dx = \frac{4}{2}\cdot \ln (x^2+10x+34)+\frac{2\cdot 7-4\cdot 10}{\sqrt{4\cdot 34-10^2}} \arctg\frac{2x+10}{\sqrt{4\cdot 34-10^2}}+C=\\ =2\cdot \ln (x^2+10x+34)+\frac{-26}{\sqrt{36}} \arctg\frac{2x+10}{\sqrt{36}}+C =2\cdot \ln (x^2+10x+34)+\frac{-26}{6} \arctg\frac{2x+10}{6}+C=\\ =2\cdot \ln (x^2+10x+34)-\frac{13}{3} \arctg\frac{x+5}{3}+C. $$

Решим этот же пример, но без использования готовой формулы. Попробуем выделить в числителе производную знаменателя. Что это означает? Мы знаем, что $(x^2+10x+34)"=2x+10$. Именно выражение $2x+10$ нам и предстоит вычленить в числителе. Пока что числитель содержит лишь $4x+7$, но это ненадолго. Применим к числителю такое преобразование:

$$ 4x+7=2\cdot 2x+7=2\cdot (2x+10-10)+7=2\cdot(2x+10)-2\cdot 10+7=2\cdot(2x+10)-13. $$

Теперь в числителе появилось требуемое выражение $2x+10$. И наш интеграл можно переписать в таком виде:

$$ \int\frac{4x+7}{x^2+10x+34} dx= \int\frac{2\cdot(2x+10)-13}{x^2+10x+34}dx. $$

Разобьём подынтегральную дробь на две. Ну и, соответственно, сам интеграл тоже "раздвоим":

$$ \int\frac{2\cdot(2x+10)-13}{x^2+10x+34}dx=\int \left(\frac{2\cdot(2x+10)}{x^2+10x+34}-\frac{13}{x^2+10x+34} \right)\; dx=\\ =\int \frac{2\cdot(2x+10)}{x^2+10x+34}dx-\int\frac{13dx}{x^2+10x+34}=2\cdot\int \frac{(2x+10)dx}{x^2+10x+34}-13\cdot\int\frac{dx}{x^2+10x+34}. $$

Поговорим сперва про первый интеграл, т.е. про $\int \frac{(2x+10)dx}{x^2+10x+34}$. Так как $d(x^2+10x+34)=(x^2+10x+34)"dx=(2x+10)dx$, то в числителе подынтегральной дроби расположен дифференциал знаменателя. Короче говоря, вместо выражения $(2x+10)dx$ запишем $d(x^2+10x+34)$.

Теперь скажем пару слов и о втором интеграле. Выделим в знаменателе полный квадрат: $x^2+10x+34=(x+5)^2+9$. Кроме того, учтём $dx=d(x+5)$. Теперь полученную нами ранее сумму интегралов можно переписать в несколько ином виде:

$$ 2\cdot\int \frac{(2x+10)dx}{x^2+10x+34}-13\cdot\int\frac{dx}{x^2+10x+34} =2\cdot\int \frac{d(x^2+10x+34)}{x^2+10x+34}-13\cdot\int\frac{d(x+5)}{(x+5)^2+9}. $$

Если в первом интеграле сделать замену $u=x^2+10x+34$, то он примет вид $\int\frac{du}{u}$ и возьмётся простым применением второй формулы из . Что же касается второго интеграла, то для него осуществима замена $u=x+5$, после которой он примет вид $\int\frac{du}{u^2+9}$. Это чистейшей воды одиннадцатая формула из таблицы неопределенных интегралов . Итак, возвращаясь к сумме интегралов, будем иметь:

$$ 2\cdot\int \frac{d(x^2+10x+34)}{x^2+10x+34}-13\cdot\int\frac{d(x+5)}{(x+5)^2+9} =2\cdot\ln(x^2+10x+34)-\frac{13}{3}\arctg\frac{x+5}{3}+C. $$

Мы получили тот же ответ, что и при применении формулы , что, собственно говоря, неудивительно. Вообще, формула доказывается теми же методами, кои мы применяли для нахождения данного интеграла. Полагаю, что у внимательного читателя тут может возникнуть один вопрос, посему сформулирую его:

Вопрос №1

Если к интегралу $\int \frac{d(x^2+10x+34)}{x^2+10x+34}$ применять вторую формулу из таблицы неопределенных интегралов , то мы получим следующее:

$$ \int \frac{d(x^2+10x+34)}{x^2+10x+34}=|u=x^2+10x+34|=\int\frac{du}{u}=\ln|u|+C=\ln|x^2+10x+34|+C. $$

Почему же в решении отсутствовал модуль?

Ответ на вопрос №1

Вопрос совершенно закономерный. Модуль отсутствовал лишь потому, что выражение $x^2+10x+34$ при любом $x\in R$ больше нуля. Это совершенно несложно показать несколькими путями. Например, так как $x^2+10x+34=(x+5)^2+9$ и $(x+5)^2 ≥ 0$, то $(x+5)^2+9 > 0$. Можно рассудить и по-иному, не привлекая выделение полного квадрата. Так как $10^2-4\cdot 34=-16 < 0$, то $x^2+10x+34 > 0$ при любом $x\in R$ (если эта логическая цепочка вызывает удивление, советую посмотреть графический метод решения квадратных неравенств). В любом случае, так как $x^2+10x+34 > 0$, то $|x^2+10x+34|=x^2+10x+34$, т.е. вместо модуля можно использовать обычные скобки.

Все пункты примера №1 решены, осталось лишь записать ответ.

Ответ :

  1. $\int\frac{7dx}{x+9}=7\ln|x+9|+C$;
  2. $\int\frac{11dx}{(4x+19)^8}=-\frac{11}{28(4x+19)^7}+C$;
  3. $\int\frac{4x+7}{x^2+10x+34}dx=2\cdot\ln(x^2+10x+34)-\frac{13}{3}\arctg\frac{x+5}{3}+C$.

Пример №2

Найти интеграл $\int\frac{7x+12}{3x^2-5x-2}dx$.

На первый взгляд подынтегральая дробь $\frac{7x+12}{3x^2-5x-2}$ очень похожа на элементарную дробь третьего типа, т.е. на $\frac{Mx+N}{x^2+px+q}$. Кажется, что единcтвенное отличие - это коэффициент $3$ перед $x^2$, но ведь коэффициент и убрать недолго (за скобки вынести). Однако это сходство кажущееся. Для дроби $\frac{Mx+N}{x^2+px+q}$ обязательным является условие $p^2-4q < 0$, которое гарантирует, что знаменатель $x^2+px+q$ нельзя разложить на множители. Проверим, как обстоит дело с разложением на множители у знаменателя нашей дроби, т.е. у многочлена $3x^2-5x-2$.

У нас коэффициент перед $x^2$ не равен единице, посему проверить условие $p^2-4q < 0$ напрямую мы не можем. Однако тут нужно вспомнить, откуда взялось выражение $p^2-4q$. Это всего лишь дискриминант квадратного уравнения $x^2+px+q=0$. Если дискриминант меньше нуля, то выражение $x^2+px+q$ на множители не разложишь. Вычислим дискриминант многочлена $3x^2-5x-2$, расположенного в знаменателе нашей дроби: $D=(-5)^2-4\cdot 3\cdot(-2)=49$. Итак, $D > 0$, посему выражение $3x^2-5x-2$ можно разложить на множители. А это означает, что дробь $\frac{7x+12}{3x^2-5x-2}$ не является элементаной дробью третьего типа, и применять к интегралу $\int\frac{7x+12}{3x^2-5x-2}dx$ формулу нельзя.

Ну что же, если заданная рациональная дробь не является элементарной, то её нужно представить в виде суммы элементарных дробей, а затем проинтегрировать. Короче говоря, след воспользоваться . Как разложить рациональную дробь на элементарные подробно написано . Начнём с того, что разложим на множители знаменатель:

$$ 3x^2-5x-2=0;\\ \begin{aligned} & D=(-5)^2-4\cdot 3\cdot(-2)=49;\\ & x_1=\frac{-(-5)-\sqrt{49}}{2\cdot 3}=\frac{5-7}{6}=\frac{-2}{6}=-\frac{1}{3};\\ & x_2=\frac{-(-5)+\sqrt{49}}{2\cdot 3}=\frac{5+7}{6}=\frac{12}{6}=2.\\ \end{aligned}\\ 3x^2-5x-2=3\cdot\left(x-\left(-\frac{1}{3}\right)\right)\cdot (x-2)=3\cdot\left(x+\frac{1}{3}\right)(x-2). $$

Подынтеральную дробь представим в таком виде:

$$ \frac{7x+12}{3x^2-5x-2}=\frac{7x+12}{3\cdot\left(x+\frac{1}{3}\right)(x-2)}=\frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}. $$

Теперь разложим дробь $\frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}$ на элементарные:

$$ \frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)} =\frac{A}{x+\frac{1}{3}}+\frac{B}{x-2}=\frac{A(x-2)+B\left(x+\frac{1}{3}\right)}{\left(x+\frac{1}{3}\right)(x-2)};\\ \frac{7}{3}x+4=A(x-2)+B\left(x+\frac{1}{3}\right). $$

Чтобы найти коэффициенты $A$ и $B$ есть два стандартных пути: метод неопределённых коэффициентов и метод подстановки частных значений. Применим метод подстановки частных значений, подставляя $x=2$, а затем $x=-\frac{1}{3}$:

$$ \frac{7}{3}x+4=A(x-2)+B\left(x+\frac{1}{3}\right).\\ x=2;\; \frac{7}{3}\cdot 2+4=A(2-2)+B\left(2+\frac{1}{3}\right); \; \frac{26}{3}=\frac{7}{3}B;\; B=\frac{26}{7}.\\ x=-\frac{1}{3};\; \frac{7}{3}\cdot \left(-\frac{1}{3} \right)+4=A\left(-\frac{1}{3}-2\right)+B\left(-\frac{1}{3}+\frac{1}{3}\right); \; \frac{29}{9}=-\frac{7}{3}A;\; A=-\frac{29\cdot 3}{9\cdot 7}=-\frac{29}{21}.\\ $$

Так как коэффициенты найдены, осталось лишь записать готовое разложение:

$$ \frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}=\frac{-\frac{29}{21}}{x+\frac{1}{3}}+\frac{\frac{26}{7}}{x-2}. $$

В принципе, можно такую запись оставить, но мне по душе более аккуратный вариант:

$$ \frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}=-\frac{29}{21}\cdot\frac{1}{x+\frac{1}{3}}+\frac{26}{7}\cdot\frac{1}{x-2}. $$

Возвращаясь к исходному интегралу, подставим в него полученное разложение. Затем разобьём интеграл на два, и к каждому применим формулу . Константы я предпочитаю сразу выносить за знак интеграла:

$$ \int\frac{7x+12}{3x^2-5x-2}dx =\int\left(-\frac{29}{21}\cdot\frac{1}{x+\frac{1}{3}}+\frac{26}{7}\cdot\frac{1}{x-2}\right)dx=\\ =\int\left(-\frac{29}{21}\cdot\frac{1}{x+\frac{1}{3}}\right)dx+\int\left(\frac{26}{7}\cdot\frac{1}{x-2}\right)dx =-\frac{29}{21}\cdot\int\frac{dx}{x+\frac{1}{3}}+\frac{26}{7}\cdot\int\frac{dx}{x-2}dx=\\ =-\frac{29}{21}\cdot\ln\left|x+\frac{1}{3}\right|+\frac{26}{7}\cdot\ln|x-2|+C. $$

Ответ : $\int\frac{7x+12}{3x^2-5x-2}dx=-\frac{29}{21}\cdot\ln\left|x+\frac{1}{3}\right|+\frac{26}{7}\cdot\ln|x-2|+C$.

Пример №3

Найти интеграл $\int\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}dx$.

Нам нужно проинтегрировать дробь $\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}$. В числителе расположен многочлен второй степени, а в знаменателе - многочлен третьей степени. Так как степень многочлена в числителе меньше степени многочлена в знаменателе, т.е. $2 < 3$, то подынтегральная дробь является правильной. Разложение этой дроби на элементарные (простейшие) было получено в примере №3 на странице, посвящённой разложению рациональных дробей на элементарные. Полученное разложение таково:

$$ \frac{x^2-38x+157}{(x-1)(x+4)(x-9)}=-\frac{3}{x-1}+\frac{5}{x+4}-\frac{1}{x-9}. $$

Нам останется только разбить заданный интеграл на три, и к каждому применить формулу . Константы я предпочитаю сразу выносить за знак интеграла:

$$ \int\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}dx=\int\left(-\frac{3}{x-1}+\frac{5}{x+4}-\frac{1}{x-9} \right)dx=\\=-3\cdot\int\frac{dx}{x-1}+ 5\cdot\int\frac{dx}{x+4}-\int\frac{dx}{x-9}=-3\ln|x-1|+5\ln|x+4|-\ln|x-9|+C. $$

Ответ : $\int\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}dx=-3\ln|x-1|+5\ln|x+4|-\ln|x-9|+C$.

Продолжение разбора примеров этой темы расположено во второй части.

Контрольную работу на интегрирование функций, в том числе и рациональных дробей задают студентам 1, 2 курсов. Примеры интегралов в основном будут интересны для математиков, экономистов, статистов. Данные примеры задавали на контрольной работе в ЛНУ им. И. Франка. Условия следующих примеров "Найти интеграл" или "Вычислить интеграл", поэтому для экономии места и Вашего времени их не выписывали.

Пример 15. Мы пришли к интегрированию дробно-рациональных функций . Они занимают особое место среди интегралов, поскольку требуют много времени на вычисление и помогают преподавателям проверить Ваши знания не только по интегрированию. Для упрощения функции под интегралом добавим и вычтем в числителе выражение, которое позволит разбить функцию под интегралом на две простые


В результате один интеграл находим довольно быстро, во втором нужно дробь разложить на суму элементарных дробей

При сведении к общему знаменателю получим такие числительные

Далее раскрываем скобки и группируем

Приравниваем значение при одинаковых степенях "икс" справа и слева. В результате придем к системе трех линейных уравнений (СЛАУ) с тремя неизвестными.

Как решать системы уравнений описано в других статьях сайта. В конечном варианте Вы получите следующее решения СЛАУ
A=4; B=-9/2; C=-7/2.
Подставляем постоянные в разложение дроби на простейшие и выполняем интегрирование


На этом пример решен.

Пример 16. Опять нужно найти интеграл от дробно-рациональной функции. Для начала кубическое уравнение, которое содержится в знаменателе дроби разложим на простые множители

Далее выполняем разложение дроби на простейшие

Сводим правую сторону к общему знаменателю и раскрываем скобки в числителе.


Приравниваем коэффициенты при одинаковых степенях переменной. Снова придем к СЛАУ с тремя неизвестными

Подставляем значения А,В,С в разложение и вычисляем интеграл

Первые два слагаемых дают логарифм, последний тоже легко найти.

Пример 17. В знаменателе дробно-рациональной функции имеем разницу кубов. Ее по формулам сокращенного умножения раскладываем на два простых множителя

Далее полученную дробную функцию расписываем на сумму простых дробей и сводим их под общий знаменатель

В числителе получим следующее выражение.

Из него формируем систему линейных уравнений для вычисления 3 неизвестных

A=1/3; B=-1/3; C=1/3.
Подставляем А, В, С в формулу и выполняем интегрирование. В результате придем к такому ответу


Здесь числитель второго интеграла превращали в логарифм, при этом остаток под интегралом дает арктангенс.
Подобных примеров на интегрирование рациональных дробей в интернете очень много. Похожие примеры Вы можете найти из приведенных ниже материалов.