Открытие планет с использованием закона всемирного тяготения. История открытия закона всемирного тяготения Значение гравитационной постоянной

ЗНАЧЕНИЕ ЗАКОНА ВСЕМИРНОГО ТЯГОТЕНИЯ

Закон всемирного тяготения лежит в основе небесной механики - науки о движении планет.

С помощью этого закона с огромной точностью определяются положения небесных тел на небесном своде на многие десятки лет вперед и вычисляются их траектории.

Закон всемирного тяготения применяется также в расчетах движения искусственных спутников Земли и межпланетных автоматических аппаратов.

Возмущения в движении планет

Планеты не движутся строго по законам Кеплера. Законы Кеплера точно соблюдались бы для движения данной планеты лишь в том случае, когда вокруг Солнца обращалась бы одна эта планета. Но в Солнечной системе планет много, все они притягиваются как Солнцем, так и друг другом. Поэтому возникают возмущения движения планет. В Солнечной системе возмущения невелики, потому что притяжение планеты Солнцем гораздо сильнее притяжения другими планетами.

При вычислении видимого положения планет приходится учитывать возмущения. При запуске искусственных небесных тел и при расчете их траекторий пользуются приближенной теорией движения небесных тел - теорией возмущений.

Открытие Нептуна

Одним из ярких примеров триумфа закона всемирного тяготения является открытие планеты Нептун. В 1781 г. английский астроном Вильям Гершель открыл планету Уран.

Была вычислена ее орбита и составлена таблица положений этой планеты на много лет вперед. Однако проверка этой таблицы, проведенная в 1840 г., показала, что данные ее расходятся с действительностью.

Ученые предположили, что отклонение в движении Урана вызвано притяжением неизвестной планеты, находящейся от Солнца еще дальше, чем Уран. Зная отклонения от расчетной траектории (возмущения движения Урана), англичанин Адамс и француз Леверрье, пользуясь законом всемирного тяготения, вычислили положение этой планеты на небе.

Адамс раньше закончил вычисления, но наблюдатели, кото­рым он сообщил свои результаты, не торопились с проверкой. Тем временем Леверрье, закончив вычисления, указал немец­кому астроному Галле место, где надо искать неизвестную пла­нету.

Оба открытия, как говорят, были сделаны «на кончи­ке пера».

Правильность открытого Ньютоном закона всемирно­го тяготения подтверждается и тем, что с помощью этого зако­на и второго закона Ньютона можно вывести законы Кеплера. Мы не будем приводить этот вывод.

При помощи закона всемирного тяготения можно вычислить массу планет и их спутников; объяснить такие явления, как приливы и отливы воды в океанах, и многое другое.

Пределы применимости закона

Закон всемирного тяготения применим только для материальных точек, т.е. для тел, размеры которых значительно меньше, чем расстояние между ними; тел, имеющих форму шара; для шара большого радиуса, взаимодействующего с телами, размеры которых значительно меньше размеров шара.

Но закон неприменим, например, для взаимодействия бесконечного стержня и шара. В этом случае сила тяготения обратно пропорциональна только расстоянию, а не квадрату расстояния. А сила притяжения между телом и бесконечной плоскостью вообще от расстояния не зависит.

Сила тяжести

Частным случаем гравитационных сил является сила притяжения тел к Земле. Эту силу называют силой тяжести. В этом случае закон всемирного тяготения имеет вид:

F т = G ∙mM/(R+h) 2

где m – масса тела (кг),

M – масса Земли (кг),

R – радиус Земли (м),

h – высота над поверхностью (м).

Но сила тяжести F т = mg, отсюда mg = G ·mM/(R+h) 2 , а ускорение свободного падения g = G ∙M/(R+h) 2 .

На поверхности Земли (h = 0) g = G·M/R 2 (9,8 м/с 2).

Ускорение свободного падения зависит

От высоты над поверхностью Земли;

От широты местности (Земля – неинерциальная система отсчета);

От плотности пород земной коры;

От формы Земли (приплюснута у полюсов).

В приведенной выше формуле для g последние три зависимости не учитываются. При этом еще раз подчеркнем, что ускорение свободного падения не зависит от массы тела.

Применение закона при открытии новых планет

Когда была открыта планета Уран, на основе закона всемирного тяготения рассчитали ее орбиту. Но истинная орбита планеты не совпадала с расчетной. Предположили, что возмущение орбиты вызвало наличием еще одной планеты, находящейся за Ураном, которая своей силой тяготения изменяет его орбиту. Чтобы найти новую планету, необходимо было решить систему из 12 дифференциальных уравнений с 10 неизвестными. Эту задачу выполнил английский студент Адамс; решение он отправил в Английскую академию наук. Но там на его работу не обратили внимания. А французский математик Леверье, решив задачу, послал результат итальянскому астроному Галле. И тот, в первый же вечер, наведя свою трубу в указанную точку, обнаружил новую планету. Ей дали название Нептун. Подобным же образом в 30-е годы двадцатого века была открыта и 9-я планета Солнечной системы – Плутон.

На вопрос о том, какова природа сил тяготения, Ньютон отвечал: «Не знаю, а гипотез измышлять не желаю».

V. Вопросы для закрепления нового материала.

На экране вопросы для повторения

Как формулируется закон всемирного тяготения?

Какой вид имеет формула закона всемирного тяготения для материальных точек?

Что называют гравитационной постоянной? Какой ее физический смысл? Каково значение в СИ?

Что называется гравитационным полем?

Зависит ли сила тяготения от свойств среды, в которой находятся тела?

Зависит ли ускорение свободного падения тела от его массы?

Одинакова ли сила тяжести в различных точках земного шара?

Объясните влияние вращения Земли вокруг оси на ускорения свободного падения.

Как изменяется ускорение свободного падения при удалении от поверхности Земли?

Почему Луна не падает на Землю? (Луна обращается вокруг Земли, удерживаемая силой притяжения. Луна не падает на Землю, потому что, имея начальную скорость, движется по инерции. Если прекратится действие силы притяжения Луны к Земле, Луна по прямой линии умчится в бездну космического пространства. Прекратись движение по инерции – и Луна упала бы на Землю. Падение продолжалось бы четверо суток двенадцать часов пятьдесят четыре минуты семь секунд. Так рассчитал Ньютон.)

VI. Решение задач по теме урока

Задача 1

На каком расстоянии сила притяжения двух шариков массами по 1г равна 6,7 · 10 -17 Н?

(Ответ: R = 1м.)

Задача 2

На какую высоту от поверхности Земли поднялся космический корабль, если приборы отметили уменьшение ускорения свободного падения до 4,9м/с 2 ?

(Ответ: h = 2600км.)

Задача 3

Сила тяготения между двумя шарами 0,0001Н. Какова масса одного из шаров, если расстояние между их центрами 1м, а масса другого шара 100кг?

(Ответ: примерно 15 тонн.)

Подведение итогов урока. Рефлексия.

Домашнее задание

1. Выучить §15, 16;

2. Выполнить упражнение 16 (1, 2);

3. Для желающих: §17.

4. Ответить на вопрос микротеста:

Космическая ракета удаляется от Земли. Как изменится сила тяготения, действующая со стороны Земли на ракету, при увеличении расстояния до центра Земли в 3 раза?

А) увеличится в 3 раза; Б) уменьшится в 3 раза;

В) уменьшится в 9 раз; Г) не изменится.

Приложения: презентация в PowerPoint.

Литература:

  1. Иванова Л.А. "Активизация познавательной деятельности учащихся при изучения физики", "Просвещение", Москва 1982 г.
  2. Гомулина Н.Н. «Открытая физика 2.0.» и «Открытая астрономия» – новый шаг. Компьютер в школе: №3/ 2000. – С. 8 – 11.
  3. ГомулинаН.Н. Обучающие интерактивные компьютерные курсы и имитационные программы по физике //Физика в школе. М.: № 8 / 2000. – С. 69 – 74.
  4. ГомулинаН.Н «Применение новых информационных и телекоммуникационных технологий в школьном физическом и астрономическом образовании. Дис. Иссл. 2002г.
  5. Повзнер А.А., Сидоренко Ф.А. Графическая поддержка лекций по физике. // XIII Международная конференция «Информационные технологии в образовании, ИТО-2003» // Сборник трудов, часть IV, – Москва – Просвещение – 2003 г. – с. 72-73.
  6. Стародубцев В.А., Чернов И.П. Разработка и практическое использование мультимедийных средств на лекциях//Физическое образование в вузах – 2002. – Том 8.– № 1. с. 86-91.
  7. http//www.polymedia.ru.
  8. Оспенникова Е.В., Худякова А.В. Работа с компьютерными моделями на занятиях школьного физического практикума // Современный физический практикум: Тезисы докл. 8-й конференции стран Содружества. – М.: 2004. - с.246-247.
  9. Гомуллина Н.Н. Обзор новых мультимедийных учебных изданий по физике, Вопросы Интеренет образования, №20, 2004.
  10. Физикус, Неureka-Klett Softwareverlag GmbH- Медиахауз, 2003
  11. Физика. Основная школа 7-9 классы: часть I, YDP Interactive Publishing – Просвещение – МЕДИА, 2003
  12. Физика 7-11, Физикон, 2003

Закон всемирного тяготения лежит в основе небесной механики - науки о движении планет. С помощью этого закона с огромной точностью определяются положения небесных тел на небесном своде на многие десятки лет вперед и вычисляются их траектории. Закон всемирного тяготения применяется также в расчетах движения искусственных спутников Земли и межпланетных автоматических аппаратов.
Возмущения в движении планет
Планеты не движутся строго по законам Кеплера. Законы Кеплера точно соблюдались бы для движения данной планеты лишь в том случае, когда вокруг Солнца обращалась бы одна эта планета. Но в Солнечной системе планет много, все они притягиваются как Солнцем, так и друг другом. Поэтому возникают возмущения движения планет. В Солнечной системе возмущения невелики, потому что притяжение планеты Солнцем гораздо сильнее притяжения другими планетами.
При вычислении видимого положения планет приходится учитывать возмущения. При запуске искусственных небесных тел и при расчете их траекторий пользуются приближенной теорией движения небесных тел - теорией возмущений.
Открытие Нептуна
Одним из ярких примеров триумфа закона всемирного тяготения является открытие планеты Нептун. В 1781 г. английский астроном Вильям Гершель открыл планету Уран. Была вычислена ее орбита и составлена таблица положений этой планеты на много лет вперед. Однако проверка этой таблицы, проведенная в 1840 г., показала, что данные ее расходятся с действительностью.
Ученые предположили, что отклонение в движении Урана вызвано притяжением неизвестной планеты, находящейся от Солнца еще дальше, чем Уран. Зная отклонения от расчетной траектории (возмущения движения Урана), англичанин Адаме и француз Леверрье, пользуясь законом всемирного тяготения, вычислили положение этой планеты на небе.
Адаме раньше закончил вычисления, но наблюдатели, которым он сообщил свои результаты, не торопились с проверкой. Тем временем Леверрье, закончив вычисления, указал немецкому астроному Галле место, где надо искать неизвестную планету. В первый же вечер, 28 сентября 1846 г., Галле, направив телескоп на указанное место, обнаружил новую планету. Ее назвали Нептуном.
Таким же образом 14 марта 1930 г. была открыта планета Плутон. Оба открытия, как говорят, были сделаны «на кончике пера».
В § 3.2 мы говорили, что закон всемирного тяготения Ньютон открыл, используя законы движения планет - законы Кеплера. Правильность открытого Ньютоном закона всемирного тяготения подтверждается и тем, что с помощью этого закона и второго закона Ньютона можно вывести законы Кеплера. Мы не будем приводить этот вывод.
При помощи закона всемирного тяготения можно вычислить массу планет и их спутников; объяснить такие явления, как приливы и отливы воды в океанах, и многое другое.
Гравитационной «тени» нет
Силы всемирного тяготения - самые универсальные из всех сил природы. Они действуют между любыми телами, обладающими массой, а массу имеют все тела. Для сил тяготения не существует никаких преград. Они действуют сквозь любые тела. Экраны из особых веществ, непроницаемых для гравитации (вроде «кеворита» из романа Г. Уэллса «Первые люди на Луне»), могут существовать только в воображении авторов научно-фантастических книг.
Стремительное развитие механики началось после открытия закона всемирного тяготения. Стало ясно, что одни и те же законы действуют на Земле и в космическом пространстве.

Еще по теме § 3.4. ЗНАЧЕНИЕ ЗАКОНА ВСЕМИРНОГО ТЯГОТЕНИЯ:

  1. § 22. Законы мышления как предполагаемые естественные законы, которые в своем изолированном действии ЯВЛЯЮТСЯ причиной 15 разумного мышления

Одним из ярких примеров триумфа закона всемирного тяготения является открытие планеты Нептун. В 1781 г. английский астроном Вильям Гершель открыл планету Уран. Была вычислена ее орбита и составлена таблица положений этой планеты на много лет вперед. Однако проверка этой таблицы, проведенная в 1840 г., показала, что данные ее расходятся с действительностью.

Ученые предположили, что отклонение в движении Урана вызвано притяжением неизвестной планеты, находящейся от Солнца еще дальше, чем Уран. Зная отклонения от расчетной траектории (возмущения движения Урана), англичанин Адаме и француз Леверрье, пользуясь законом всемирного тяготения, вычислили положение этой планеты на небе. Адаме раньше закончил вычисления, но наблюдатели, которым он сообщил свои результаты, не торопились с проверкой. Тем временем Леверрье, закончив вычисления, указал немецкому астроному Галле место, где надо искать неизвестную планету. В первый же вечер, 28 сентября 1846 г., Галле, направив телескоп на указанное место, обнаружил новую планету. Ее назвали Нептуном.

Таким же образом 14 марта 1930 г. была открыта планета Плутон. Открытие Нептуна, сделанное, по выражению Энгельса, на "кончике пера", является убедительнейшим доказательством справедливости закона всемирного тяготения Ньютона.

При помощи закона всемирного тяготения можно вычислить массу планет и их спутников; объяснить такие явления, как приливы и отливы воды в океанах, и многое другое.

Силы всемирного тяготения - самые универсальные из всех сил природы. Они действуют между любыми телами, обладающими массой, а массу имеют все тела. Для сил тяготения не существует никаких преград. Они действуют сквозь любые тела.

Определение массы небесных тел

Закон всемирного тяготения Ньютона позволяет измерить одну из важнейших физических характеристик небесного тела -- его массу.

Массу небесного тела можно определить:

а) из измерений силы тяжести на поверхности данного тела (гравиметрический способ);

б) по третьему (уточненному) закону Кеплера;

в) из анализа наблюдаемых возмущений, производимых небесным телом в движениях других небесных тел.

Первый способ применим пока только к Земле, и заключается в следующем.

На основании закона тяготения ускорение силы тяжести на поверхности Земли легко находится из формулы (1.3.2).

Ускорение силы тяжести g (точнее, ускорение составляющей силы тяжести, обусловленной только силой притяжения), так же как и радиус Земли R ,определяется из непосредственных измерений на поверхности Земли. Постоянная тяготения G достаточно точно определена из опытов Кэвендиша и Йолли, хорошо известных в физике.

С принятыми в настоящее время значениями величин g, R и G по формуле (1.3.2) получается масса Земли. Зная массу Земли и ее объем, легко найти среднюю плотность Земли. Она равна 5,52 г/см 3

Третий, уточненный закон Кеплера позволяет определить соотношение между массой Солнца и массой планеты, если у последней имеется хотя бы один спутник и известны его расстояние от планеты и период обращения вокруг нее.

Действительно, движение спутника вокруг планеты подчиняется тем же законам, что и движение планеты вокруг Солнца и, следовательно, третье уравнение Кеплера может быть записано в этом случае так:

где М - масса Солнца, кг;

т - масса планеты, кг;

m c - масса спутника, кг;

Т - период обращения планеты вокруг Солнца, с;

t c - период обращения спутника вокруг планеты, с;

a - расстояния планеты от Солнца, м;

а с -- расстояния спутника от планеты, м;

Разделив числитель и знаменатель левой части дроби этого уравнения па т и решив его относительно масс, получим

Отношение для всех планет очень велико; отношение же наоборот, мало (кроме Земли и ее спутника Луны) и им можно пренебречь. Тогда в уравнении (2.2.2) останется только одно неизвестное отношение, которое легко из него определяется. Например, для Юпитера определенное таким способом обратное отношение равно 1: 1050.

Так как масса Луны, единственного спутника Земли, сравнительно с земной массой достаточно большая, то отношением в уравнении (2.2.2) пренебрегать нельзя. Поэтому для сравнения массы Солнца с массой Земли необходимо предварительно определить массу Луны. Точное определение массы Луны является довольно трудной задачей, и решается она путем анализа тех возмущений в движении Земли, которые вызываются Луной.

Под влиянием лунного притяжения Земля должна описывать в течение месяца эллипс вокруг общего центра масс системы Земля -- Луна.

По точным определениям видимых положений Солнца в его долготе были обнаружены изменения с месячным периодом, называемые “лунным неравенством”. Наличие “лунного неравенства” в видимом движении Солнца указывает на то, что центр Земли действительно описывает небольшой эллипс в течение месяца вокруг общего центра масс “Земля -- Луна”, расположенного внутри Земли, на расстоянии 4650 км от центра Земли. Это позволило определить отношение массы Луны к массе Земли, которое оказалось равным. Положение центра масс системы “Земля -- Луна” было найдено также из наблюдений малой планеты Эрос в 1930--1931 гг. Эти наблюдения дали для отношения масс Луны и Земли величину. Наконец, по возмущениям в движениях искусственных спутников Земли отношение масс Луны и Земли получилось равным. Последнее значение наиболее точное, и в 1964 г. Международный астрономический союз принял его как окончательное в числе других астрономических постоянных. Это значение подтверждено в 1966 г. вычислением массы Луны по параметрам обращения ее искусственных спутников.

С известным отношением масс Луны и Земли из уравнения (2.26) получается, что масса Солнца M ? в 333 000 раз больше массы Земли, т.е.

Mз = 2 10 33 г.

Зная массу Солнца и отношение этой массы к массе любой другой планеты, имеющей спутника, легко определить массу этой планеты.

Массы планет, не имеющих спутников (Меркурий, Венера, Плутон), определяются из анализа тех возмущений, которые они производят в движении других планет или комет. Так, например, массы Венеры и Меркурия определены по, тем возмущениям, которые они вызывают в движении Земли, Марса, некоторых малых планет (астероидов) и кометы Энке - Баклунда, а также по возмущениям, производимым ими друг на друга.

земля планета вселенная гравитация

ОТКРЫТИЕ И ПРИМЕНЕНИЕ ЗАКОНА ВСЕМИРНОГО ТЯГОТЕНИЯ10-11 класс
УМК Б.А.Воронцова-Вельяминова
Разумов Виктор Николаевич,
учитель МОУ «Большеелховская СОШ»
Лямбирского муниципального района Республики Мордовия

Закон всемирного тяготения

Закон всемирного тяготения
Все тела во Вселенной притягиваются друг к другу
с силой, прямо пропорциональной произведению их
масс и обратно пропорциональной квадрату
расстояния между ними.
Исаак Ньютон (1643–1727)
где т1 и т2 – массы тел;
r – расстояние между телами;
G – гравитационная постоянная
Открытию закона всемирного тяготения во многом способствовали
законы движения планет, сформулированные Кеплером,
и другие достижения астрономии XVII в.

Знание расстояния до Луны позволило Исааку Ньютону доказать
тождественность силы, удерживающей Луну при ее движении вокруг Земли, и
силы, вызывающей падение тел на Землю.
Так как сила тяжести меняется обратно пропорционально квадрату расстояния,
как это следует из закона всемирного тяготения, то Луна,
находящаяся от Земли на расстоянии примерно 60 ее радиусов,
должна испытывать ускорение в 3600 раз меньшее,
чем ускорение силы тяжести на поверхности Земли, равное 9,8 м/с.
Следовательно, ускорение Луны должно составлять 0,0027 м/с2.

В то же время Луна, как любое тело, равномерно
движущееся по окружности, имеет ускорение
где ω – ее угловая скорость, r – радиус ее орбиты.
Исаак Ньютон (1643–1727)
Если считать, что радиус Земли равен 6400 км,
то радиус лунной орбиты будет составлять
r = 60 6 400 000 м = 3,84 10 м.
Звездный период обращения Луны Т = 27,32 суток,
в секундах составляет 2,36 10 с.
Тогда ускорение орбитального движения Луны
Равенство этих двух величин ускорения доказывает, что сила, удерживающая
Луну на орбите, есть сила земного притяжения, ослабленная в 3600 раз по
сравнению с действующей на поверхности Земли.

При движении планет, в соответствии с третьим
законом Кеплера, их ускорение и действующая на
них сила притяжения Солнца обратно
пропорциональны квадрату расстояния, как это
следует из закона всемирного тяготения.
Действительно, согласно третьему закону Кеплера
отношение кубов больших полуосей орбит d и квадратов
периодов обращения Т есть величина постоянная:
Исаак Ньютон (1643–1727)
Ускорение планеты равно
Из третьего закона Кеплера следует
поэтому ускорение планеты равно
Итак, сила взаимодействия планет и Солнца удовлетворяет закону всемирного тяготения.

Возмущения в движениях тел Солнечной системы

Движение планет Солнечной системы не в точности подчиняется законам
Кеплера из-за их взаимодействия не только с Солнцем, но и между собой.
Отклонения тел от движения по эллипсам называют возмущениями.
Возмущения невелики, так как масса Солнца гораздо больше массы не только
отдельной планеты, но и всех планет в целом.
Особенно заметны отклонения астероидов и комет при их прохождении
вблизи Юпитера, масса которого в 300 раз превышает массу Земли.

В XIX в. расчёт возмущений позволил открыть планету Нептун.
Вильям Гершель
Джон Адамс
Урбен Леверье
Вильям Гершель в 1781 г. открыл планету Уран.
Даже при учете возмущений со стороны всех
известных планет наблюдаемое движение
Урана не согласовывалось с расчетным.
На основе предположения о наличии еще
одной «заурановой» планеты Джон Адамс в
Англии и Урбен Леверье во Франции
независимо друг от друга сделали вычисления
ее орбиты и положения на небе.
На основе расчетов Леверье немецкий
астроном Иоганн Галле 23 сентября 1846 г.
обнаружил в созвездии Водолея неизвестную
ранее планету – Нептун.
По возмущениям Урана и Нептуна была
предсказана, а в 1930 году и обнаружена
карликовая планета Плутон.
Открытие Нептуна стало триумфом
гелиоцентрической системы,
важнейшим подтверждением справедливости
закона всемирного тяготения.
Уран
Нептун
Плутон
Иоганн Галле