Амины обладают свойствами. Амины: классификация, номенклатура; химическая идентификация, спектральные характеристики

АМИНЫ – класс соединений, представляющий собой органические производные аммиака, в котором один, два или три атома водорода замещены органическими группами. Отличительный признак – наличие фрагмента R–N<, где R – органическая группа.

Классификация аминов разнообразна и определяется тем, какой признак строения взят за основу.

В зависимости от числа органических групп, связанных с атомом азота, различают:

первичные амины – одна органическая группа у азота RNH2

вторичные амины – две органических группы у азота R2NH, органические группы могут быть различными R"R"NH

третичные амины – три органических группы у азота R3N или R"R"R""N

По типу органической группы, связанной с азотом, различают алифатические СH3 – N< и ароматические С 6 H5 – N< амины, возможны и смешанные варианты.

По числу аминогрупп в молекуле амины делят на моноамины СH3 – NН 2 , диамины H2N(СH2) 2 NН 2 , триамины и т.д.

Химические свойства аминов. Отличительная способность аминов – присоединять нейтральные молекулы (например, галогеноводороды HHal, с образованием органоаммониевых солей, подобных аммонийным солям в неорганической химии. Для образования новой связи азот предоставляет неподеленную электронную пару, исполняя роль донора. Участвующий в образовании связи протон Н + (от галогеноводорода) играет роль акцептора (приемника), такую связь называют донорно-акцепторной (рис. 1). Возникшая ковалентная связь N–H полностью эквивалентна имеющимся в амине связям

Третичные амины также присоединяют HCl, но при нагревании полученной соли в растворе кислоты она распадается, при этом R отщепляется от атома N:

(C 2 H 5) 3 N + HCl  [(C 2 H 5) 3 N H]Сl

[(C 2 H 5) 3 N H]Сl  (C 2 H 5) 2 N H + C 2 H 5 Сl

При сравнении этих двух реакций видно, что C2H5-группа и Н, как бы меняются местами, в итоге из третичного амина образуется вторичный.

Растворяясь в воде, амины по такой же схеме захватывают протон, в результате в растворе появляются ионы ОН – , что соответствует образованию щелочной среды, ее можно обнаружить с помощью обычных индикаторов.

C2H5N H2 + H2O  + + OH–

С образованием донорно-акцепторной связи амины могут присоединять не только HCl, но и галогеналкилы RCl, при этом образуется новая связь N–R, которая также эквивалентна уже имеющимся. Если в качестве исходного взять третичный амин, то получается соль тетраалкиламмония (четыре группы R у одного атома N):

(C 2 H 5) 3 N + C 2 H 5 I  [(C 2 H 5) 4 N ]I

Эти соли, растворяясь в воде и некоторых органических растворителях, диссоциируют (распадаются), образуя ионы:



[(C2H5) 4 N ]I  [(C2H5) 4 N ] + + I–

Такие растворы, как и все растворы, содержащие ионы, проводят электрический ток. В тетраалкиламмониевых солях можно заменить галоген НО-группой:

[(CH 3) 4 N ]Cl + AgOH  [(CH 3) 4 N ]OH + AgCl

Получающийся гидроксид тетраметиламмония представляет собой сильное основание, по свойствам близкое к щелочам.

Первичные и вторичные амины взаимодействуют с азотистой кислотой HON=O, однако реагируют они различным образом. Из первичных аминов образуются первичные спирты:

C2H5N H2 + HN O2  C2H5OH + N 2 +H2O

В отличие от первичных, вторичные амины образуют с азотистой кислотой желтые, трудно растворимые нитрозамины – соединения, содержащие фрагмент >N–N = O:

(C 2 H 5) 2 N H + HN O 2  (C 2 H 5) 2 N N =O + H 2 O

Третичные амины при обычной температуре с азотистой кислотой не реагируют, таким образом, азотистая кислота является реагентом, позволяющим различить первичные, вторичные и третичные амины.

При конденсации аминов с карбоновыми кислотами образуются амиды кислот – соединения с фрагментом –С(О)N< (рис. 2А). Если в качестве исходных соединений взять диамин и дикарбоновую кислоту (соединения, содержащие соответственно две амино- и две карбоксильные группы, соответственно), то они взаимодействуют по такой же схеме, но поскольку каждое соединение содержит две реагирующие группы, то образуется полимерная цепь, содержащая амидные группы (рис. 2Б). Такие полимеры называют полиамидами.

Конденсация аминов с альдегидами и кетонами приводит к образованию так называемых оснований Шиффа – соединений, содержащих фрагмент –N=C< (рис. 2В). На схеме В видно, что для образования двойной связи между N и С азот должен предоставить два атома Н (для образования конденсационной воды), следовательно, в такой реакции могут участвовать только первичные амины RNH2.

При взаимодействии первичных аминов с фосгеном Cl2С=O образуются соединения с группировкой –N=C=O, называемые изоцианатами (рис. 2Г, получение соединения с двумя изоцианатными группами).



Среди ароматических аминов наиболее известен анилин (фениламин) С 6 Н 5 NH 2 . По свойствам он близок к алифатическим аминам, но его основность выражена слабее – в водных растворах он не образует щелочную среду. Как и алифатические амины, с сильными минеральными кислотами он может образовывать аммониевые соли [С 6 Н 5 NH 3 ] + Сl–. При взаимодействии анилина с азотистой кислотой (в присутствии HCl) образуется диазосоединение, содержащее фрагмент R–N=N, оно получается в виде ионной соли, называемой солью диазония (рис. 3А). Таким образом, взаимодействие с азотистой кислотой идет не так, как в случае алифатических аминов. Бензольное ядро в анилине обладает реакционной способностью, характерной для ароматических соединений (см. АРОМАТИЧНОСТЬ), при галогенировании атомы водорода в орто- и пара-положениях к аминогруппе замещаются, получаются хлоранилины с различной степенью замещения (рис. 3Б). Действие серной кислоты приводит к сульфированию в пара-положение к аминогруппе, образуется так называемая сульфаниловая кислота (рис. 3В).

ТЕМА ЛЕКЦИИ: АМИНЫ И АМИНОСПИРТЫ

Вопросы:

Общая характеристика: строение, классификация, номенклатура.

Методы получения

Физические свойства

Химические свойства

Отдельные представители. Способы идентификации.

Общая характеристика: строение, классификация, номенклатура

Аминами называются производные аммиака, молекуле которого атомы водорода замещены на углеводородные радикалы.

Классификация

1– В зависимости от числа замещенных атомов водорода аммиака различают амины :

первичные содержат аминогруппу аминогруппу (–NH 2), общая формула: R–NH 2 ,

вторичные содержат иминогруппу (–NH),

общая формула: R 1 –NH–R 2

третичные содержат атом азота, общая формула: R 3 –N

Известны также соединения с четвертичным атомом азота: четвертичный гидроксид аммония и его соли.

2– В зависимости от строения радикала амины различают:

– алифатические (предельные и непредельные)

– алициклические

– ароматические (содержащие в ядре аминогруппу или боковой цепи)

– гетероциклические.

Номенклатура, изомерия аминов

1. Названия аминов по рациональной номенклатуре обычно производят от названий вхо­дящих в них углеводородных радикалов с присоединением окончания –амин : метиламин СН 3 –NН 2 , диметиламин СН 3 –NН–СН 3 , триметиламин (СН 3) 3 N, пропиламин СН 3 СН 2 СН 2 –NН 2 , фениламин С 6 Н 5 – NН 2 и т. д.

2. По номенклатуре ИЮПАК аминогруппу рассматривают как функциональную группу и ее название амино- ставят перед на­званием основной цепи:


Изомерия аминов зависит от изомерии радикалов.

Способы получения аминов

Амины могут быть получены различными способами.

А) Действием на аммиак галогеналкилами

2NH 3 + CH 3 I ––® CH 3 – NH 2 + NH 4 I

Б) Каталитическое гидрирование нитробензола молекулярным водородом:

С 6 Н 5 NО 2 ––® С 6 Н 5 NН 2 + Н 2 О

нитробензол кат анилин

В) Получение низших аминов (С 1 –С 4) путем алкилирования спиртами:

350 0 C, Al 2 O 3

R–OH + NH 3 –––––––––––® R–NH 2 +H 2 O



350 0 C, Al 2 O 3

2R–OH + NH 3 –––––––––––® R 2 –NH +2H 2 O

350 0 C, Al 2 O 3

3R–OH + NH 3 –––––––––––® R 3 –N + 3H 2 O

Физические свойства аминов

Метиламин, диметиламин и триметиламин - газы, сред­ние члены ряда аминов - жидкости, высшие - твердые тела. С увеличением молекулярной массы аминов увеличивается их плотность, повышается температура кипения и уменьшается растворимость в воде. Высшие амины в воде нерастворимы. Низшие амины имеют неприятный запах, несколько напоми­нающий запах испорченной рыбы. Высшие амины или не имеют запаха, или обладают очень слабым запахом. Ароматические амины представляют собой бесцветные жидкости или твердые вещества, обладающие неприятным запахом и ядовиты.

Химические свойства аминов

Химическое поведение аминов определяется наличием в молекуле аминогруппы. На внешней электронной оболочке атома азота имеется 5 электронов. В молекуле амина также, как и в молекуле аммиака, атом азота затрачивает на образование трех ковалентных связей три электрона, а два остаются свободными.

Наличие свободной электронной пары у атома азота дает ему возможность присоединять протон, поэтому амины подобны аммиаку, проявляют основные свойства, образуют гидроксиды, соли.

Солеобразование. Амины с кислотами дают соли, кото­рые под действием сильного основания вновь дают свободные амины:


Амины дают соли даже со слабой угольной кислотой:


Как и аммиак, амины обладают основными свойствами что объясняется связыванием протонов в слабо диссоциирующий катион замещенного аммония:


При растворении амина в воде часть протонов воды расходуется на образование катиона; таким образом, в раство­ре появляется избыток гидроксид-ионов, и он имеет щелочные свойства, достаточные для окрашивания растворов лакмуса в синий цвет и фенолфталеина в малиновый. Основность аминов предельного ряда колеблется в очень небольших пределах и близка к основности аммиака.

Эффект метильных групп несколько повышает основ­ность метил- и диметиламина. В случае триметиламина метильные группы уже затрудняют сольватацию образующегося катиона и уменьшают его стабилизацию, а следовательно, и основность.

Соли аминов следует рассматривать как комплексные со­единения. Центральным атомом в них является атом азота, координационное число которого равно четырем. Атомы водорода или алкилы связаны с атомом азота и расположены во внутренней сфере; кислотный остаток расположен во внешней сфере.

Ацилирование аминов. При действии на первичные и вторичные амины некоторых производных органических кис­лот (галогенангидридов, ангидридов и др.) образуются амиды:


Вторичные амины с азотистой кислотой дают нитрозоамины - желтоватые жидкости, мало растворимые в воде:


Третичные амины устойчивы к действию разбавленной азотистой кислоты на холоду (образуют соли азотистой кисло­ты), в более жестких условиях один из радикалов отщепляется и образуется нитрозоамин.

Диамины

Диамины играют важную роль в биологических процес­сах. Как правило, они легко растворимы в воде, обладают ха­рактерным запахом, имеют сильно щелочную реакцию, взаи­модействуют с С0 2 воздуха. Диамины образуют устойчивые со­ли с двумя эквивалентами кислоты.

Этилендиамин (1,2-этандиамин) H 2 NCH 2 СН 2 NН 2 . Он является простейшим диамином; может быть получен дейст­вием аммиака на этиленбромид:


Тетраметилендиамин (1,4-бутандиамин), или путресцин, NН 2 СН 2 СН 2 СН 2 СН 2 NH 2 и пентаметилендиамин (1,5-пентандиамин) NН 2 СН 2 СН 2 СН 2 СН 2 СН 2 NН 2 , или када­верин. Они были открыты в продуктах разложения белковых веществ; образуются при декарбоксилировании диаминокислот и названы птомаинами (от греч.- труп), их счита­ли ранее «трупными ядами». В настоящее время выяснено, что ядовитость гниющих белков вызвана не птомаинами, а при­сутствием других веществ.

Путресцин и кадаверин образуются в результате жизнеде­ятельности многих микроорганизмов (например, возбудителей столбняка и холеры) и грибков; они встречаются в сыре, спо­рынье, мухоморе, пивных дрожжах.

Некоторые диамины применяются в качестве сырья для получения полиамидных волокон и пластмасс. Так, из гекса-метилендиамина NН 2 СН 2 СН 2 СН 2 СН 2 СН 2 СН 2 NН 2 получено весьма ценное синтетическое волокно - найлон (США) или анид (Россия).

Аминоспирты

Аминоспирты - соединения со смешанными функциями, в молекуле которых содержатся амино- и оксигруппы.

Аминоэтанол (этаноламин) НО-СН 2 СН 2 -NH 2 , или коламин.

Этаноламин - густая маслянистая жидкость, смешивает­ся с водой во всех отношениях, обладает сильными щелочны­ми свойствами. Hаряду с моноэтаноламином получаются также диэтаноламин и триэтаноламин:


Холин входит в состав лецитинов - жироподобных ве­ществ, весьма распространенных в животных и растительных организмах, и может быть выделен из них. Холин представляет собой кристаллическую, весьма гиг­роскопичную, легко расплывающуюся на воздухе массу. Он обладает сильными щелочными свойствами и с кислотами лег­ко образует соли.

При ацилировании холина уксусным ангидридом образу­ется холинацетат, называемый также ацетилхолином:



Ацетилхолин играет крайне важную биохимическую роль, так как является медиатором (посредником), передающим воз­буждение от нервных рецепторов к мышцам.

I. По числу углеводородных радикалов в молекуле амина:


Первичные амины R-NH 2


(производные углеводородов, в которых атом водорода замещен на аминогруппу -NH 2),


Вторичные амины R-NH-R"

II. По строению углеводородного радикала:


Алифатические, например: C 2 H 5 -NH 2 этиламин




Предельные первичные амины

Общая формула C n H 2n+1 NH 2 (n ≥ 1); или C n H 2n+3 N (n ≥ 1)

Номенклатура

Названия аминов (особенно вторичных и третичных) обычно дают по радикально-функциональной номенклатуре, перечисляя в алфавитном порядке радикалы и добавляя название класса - амин. Названия первичных аминов по заместительной номенклатуре составляют из названия родоначального углеводорода и суффикса - амин.


CH 3 -NH 2 метанамин (метиламин)


CH 3 -CH 2 -NH 2 этанамин (этиламин)




Первичные амины часто называют как производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на аминогруппы NH 2 . Аминогруппа при этом рассматривается как заместитель, а ее местоположение указывается цифрой в начале названия. Например:


H 2 N-CH 2 -CH 2 -CH 2 -CH 2 -NH 2 1,4-диаминобутан.


Анилин (фениламин) C 6 H 5 NH 2 в соответствии с этим способом называется аминобензолом.

Гомологический ряд предельных аминов

СН 3 NH 2 - метиламин (первичный амин), (СН 3) 2 NH - диметиламин (вторичный амин), (СН 3) 3 N - триметиламин (третичный амин) и т.д.

Изомерия

Структурная изомерия


Углеродного скелета, начиная с С 4 H 9 NH 2:






Положения аминогруппы, начиная с С 3 H 7 NH 2:



Изомерия аминогруппы, связанная с изменением степени замещенности атомов водорода при азоте:




Пространственная изомерия


Возможна оптическая изомерия, начиная с С 4 H 9 NH 2:


Оптические (зеркальные) изомеры - пространственные изомеры, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение (как левая и правая руки).


Физические свойства

Низшие предельные амины - газообразные вещества; средние члены гомологического ряда - жидкости; высшие амины - твердые вещества. Метиламин имеет запах аммиака, другие низшие амины - резкий неприятный запах, напоминающий запах селедочного рассола.


Низшие амины хорошо растворимы в воде, с ростом углеводородного радикала растворимость аминов падает. Амины образуются при гниении органических остатков, содержащих белки. Ряд аминов образуется в организмах человека и животных из аминокислот (биогенные амины) .

Химические свойства

Амины, как и аммиак, проявляют ярко выраженные свойства оснований, что обусловлено наличием в молекулах аминов атома азота, имеющего неподеленную пару электронов.


1. Взаимодействие с водой



Растворы аминов в воде имеют щелочную реакцию среды.


2. Взаимодействие с кислотами (образование солей)



Амины выделяются из их солей при действии щелочей:


Cl + NaOH → СН 3 CH 2 NH 2 + NaCl + Н 2 O


3. Горение аминов


4CH 3 NH 2 + 9O 2 → 4СO 2 + 10Н 2 O + 2N 2


4. Реакция с азотистой кислотой (отличие первичных аминов от вторичных и третичных)


Под действием HNO 2 первичные амины превращаются в спирты с выделением азота:


C 2 H 5 NH 2 + HNO 2 → С 2 Н 5 OН + N 2 + Н 2 O

Способы получения

1. Взаимодействие галогеналканов с аммиаком


СН 3 Вr + 2NH 3 → CH 3 NH 2 + NH 4 Br





2. Взаимодействие спиртов с аммиаком



(Практически в этих реакциях образуется смесь первичных, вторичных, третичных аминов и соли четвертичного аммониевого основания.)

Амины - это органические соединения, в которых атом водорода (может и не один) замещен на углеводородный радикал. Все амины делят на:

  • первичные амины ;
  • вторичные амины ;
  • третичные амины .

Есть еще аналоги солей аммония - четвертичные соли типа [R 4 N ] + Cl - .

В зависимости от типа радикала амины могут быть:

  • алифатические амины;
  • ароматические (смешанные) амины.

Алифатические предельные амины.

Общая формула C n H 2 n +3 N .

Строение аминов.

Атом азота находится в sp 3 -гибридизации. На 4-ой негибридной орбитали находится неподеленная пара электронов, которая обуславливает основные свойства аминов:

Элекронодонорные заместители повышают электронную плотность на атоме азота и усиливают основные свойства аминов, по этой причин вторичные амины являются более сильными основаниями, чем первичные, т.к. 2 радикала у атома азота создают большую электронную плотность, чем 1.

В третичных атомах играет важную роль пространственный фактор: т.к. 3 радикала заслоняют неподеленную пару азота, к которой сложно «подступиться» другим реагентам, основность таких аминов меньше, чем первичных или вторичных.

Изомерия аминов.

Для аминов свойственна изомерия углеродного скелета, изомерия положения аминогруппы:

Как называть амины?

В названии обычно перечисляют углеводородные радикалы (в алфавитном порядке) и добавляют окончание -амин:

Физические свойства аминов.

Первые 3 амина - газы, средние члены алифатического ряда - жидкости, а высшие - твердые вещества. Температура кипения у аминов выше, чем у соответствующих углеводородов, т.к. в жидкой фазе в молекуле образуются водородные связи.

Амины хорошо растворимы в воде, по мере роста углеводородного радикала растворимость падает.

Получение аминов.

1. Алкилирование аммиака (основной способ), который происходит при нагревании алкилгалогенида с аммиаком:

Если алкилгалогенид в избытке, то первичный амин может вступать в реакцию алкилирования, превращаясь во вторичный или третичный амин:

2. Восстановление нитросоединений:

Используют сульфид аммония (реакция Зинина ), цинк или железо в кислой среде, алюминий в щелочной среде или водород в газовой фазе.

3. Восстановление нитрилов. Используют LiAlH 4 :

4. Ферментатичное декарбоксилирование аминокислот:

Химические свойства аминов.

Все амины - сильные основания, причем алифатические более сильные, чем аммиак.

Водные растворы имеют щелочной характер.

Амины вошли в нашу жизнь совершенно неожиданно. Еще недавно это были ядовитые вещества, столкновение с которыми могло привести к смерти. И вот, спустя полтора столетия, мы активно пользуемся синтетическими волокнами, тканями, строительными материалами, красителями, в основе которых лежат амины. Нет, они не стали безопаснее, просто люди смогли их "приручить" и подчинить, извлекая для себя определенную пользу. О том, какую именно, и поговорим далее.

Определение

Для качественного и количественного определение анилина в растворах или соединениях используется реакция с в конце которой на дно пробирки выпадает белый осадок в виде 2,4,6-триброманилина.

Амины в природе

Амины встречаются в природе повсеместно в виде витаминов, гормонов, промежуточных продуктов обмена, есть они и в организме животных и в растениях. Кроме того, при гниении живых организмов также получаются средние амины, которые в жидком состоянии распространяют неприятный запах селедочного рассола. Широко описанный в литературе «трупный яд» появился именно благодаря специфическому амбре аминов.

Длительное время рассматриваемые нами вещества путали с аммиаком из-за похожего запаха. Но в середине девятнадцатого века французский химик Вюрц смог синтезировать метиламин и этиламин и доказать, что при сгорании они выделяют углеводород. Это было принципиальным отличием упомянутых соединений от аммиака.

Получение аминов в промышленных условиях

Так как атом азота в аминах находится в низшей степени окисления, то восстановление азотосодержащих соединений является наиболее простым и доступным способом их получения. Именно он широко распространен в промышленной практике из-за своей дешевизны.

Первый метод представляет собой восстановление нитросоединений. Реакция, во время которой образуется анилин, носит название ученого Зинина и была проведена в первый раз в середине девятнадцатого века. Второй способ заключается в восстановлении амидов при помощи алюмогидрида лития. Из нитрилов тоже можно восстановить первичные амины. Третий вариант - реакции алкилирования, то есть введение алкильных групп в молекулы аммиака.

Применение аминов

Сами по себе, в виде чистых веществ, амины используются мало. Один из редких примеров - полиэтиленполиамин (ПЭПА), который в бытовых условиях облегчает затвердение эпоксидной смолы. В основном первичный, третичный или вторичный амин - это промежуточный продукт в производстве различных органических веществ. Самым востребованным является анилин. Он - основа большой палитры анилиновых красителей. Цвет, который получится в конце, зависит непосредственно от выбранного сырья. Чистый анилин дает синий цвет, а смесь анилина, орто- и пара-толуидина будет красной.

Алифатические амины нужны для получения полиамидов, таких как нейлон и другие Они применяются в машиностроении, а также в производстве канатов, тканей и пленок. Кроме того, алифатические диизоцинаты используются в изготовлении полиуретанов. Из-за своих исключительных свойств (легкость, прочность, эластичность и способность прикрепляться к любым поверхностям) они востребованы в строительстве (монтажная пена, клей) и в обувной промышленности (противоскользящая подошва).

Медицина - еще одна сфера, где применяются амины. Химия помогает синтезировать из них антибиотики группы сульфаниламидов, которые успешно применяют в качестве препаратов второй линии, то есть резервной. На случай, если у бактерий разовьется устойчивость к основным лекарствам.

Вредное воздействие на организм человека

Известно, что амины - это весьма токсичные вещества. Вред здоровью может нанести любое взаимодействие с ними: вдыхание паров, контакт с открытой кожей или попадание соединений внутрь организма. Смерть наступает от нехватки кислорода, так как амины (в частности, анилин) связываются с гемоглобином крови и не дают ему захватывать молекулы кислорода. Тревожными симптомами являются одышка, посинение носогубного треугольника и кончиков пальцев, тахипноэ (учащенное дыхание), тахикардия, потеря сознания.

В случае попадания этих веществ на оголенные участки тела необходимо быстро убрать их ватой, предварительно смоченной в спирте. Делать это надо максимально аккуратно, чтобы не увеличить площадь загрязнения. Если появятся симптомы отравления - обязательно нужно обратиться к врачу.

Алифатические амины - это яд для нервной и сердечно-сосудистой систем. Они могут вызвать угнетение функций печени, ее дистрофию и даже онкологические заболевания мочевого пузыря.