Что называется теплопередачей. Теплопередача - это что такое? Виды, способы, расчет теплопередачи

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы. Существуют следующие виды теплопередачи : теплопроводность, конвекция и излучение.

Теплопроводность

Теплопроводность – это процесс передачи энергии от одного тел а к другому или от одной части тела к дpугой благодаря тепловому движению частиц. Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другом у или от одной части телa к другой передается энергия.

Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Ещё более плохой теплопроводность ю обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими - сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

Конвекция

Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если вертушку, сделанную из бумаги, поместить над источником тепла, то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Конвекция - вид теплопередачи, при котором энергия передаётся слоями жидкости или газа. Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

Излучение

Третий вид теплопередачи - излучение . Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Опыты также показывают, что чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

Теплообмен - это процесс изменения внутренней энергии без совершения работы над телом или самим телом.
Теплообмен всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой .
Когда температуры тел выравниваются, теплообмен прекращается.
Теплообмен может осуществляться тремя способами:

  1. теплопроводностью
  2. конвекцией
  3. излучением

Теплопроводность

Теплопроводность - явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте.
Наибольшей теплопроводностью обладают металлы - она у них в сотни раз больше, чем у воды. Исключением являются ртуть и свинец , но и здесь теплопроводность в десятки раз больше, чем у воды.
При опускании металлической спицы в стакан с горячей водой очень скоро конец спицы становился тоже горячим. Следовательно, внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку.
Нагревание кастрюли на электрической плитке происходит через теплопроводность.
Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.
Внесем в огонь конец деревянной палки. Он воспламенится. Другой конец палки, находящийся снаружи, будет холодным. Значит, дерево обладает плохой теплопроводностью .
Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец, останется холодным. Следовательно, и стекло имеет плохую теплопроводность .
Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.
Значит, металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь .
Теплопроводность у различных веществ различна.
Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух. Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство). Объясняется это тем, что теплопроводность - это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В пространстве, где нет частиц, теплопроводность осуществляться не может.
Если возникает необходимость предохранить тело от охлаждения или нагревания, то применяют вещества с малой теплопроводностью. Так, для кастрюль, сковородок ручки из пластмассы. Дома строят из бревен или кирпича, обладающих плохой теплопроводностью, а значит, предохраняют от охлаждения.

Конвекция

Конвекция - это процесс теплопередачи, осуществляемый путем переноса энергии потоками жидкости или газа.
Пример явления конвекции : небольшая бумажная вертушка, поставленная над пламенем свечи или электрической лампочкой, под действием поднимающегося нагретого воздуха начинает вращаться. Это явление можно объяснить таким образом. Воздух, соприкасаясь с теплой лампой, нагревается, расширяется и становится менее плотным, чем окружающий его холодный воздух. Сила Архимеда, действующая на теплый воздух со стороны холодного снизу вверх, больше, чем сила тяжести, которая действует на теплый воздух. В результате нагретый воздух «всплывает», поднимается вверх, а его место занимает холодный воздух.
При конвекции энергия переносится самими струями газа или жидкости.
Различают два вида конвекции:

  • естественная (или свободная)
Возникает в веществе самопроизвольно при его неравномерном нагревании. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется.
  • вынужденная
Наблюдается при перемешивании жидкости мешалкой, ложкой, насосом и т. д.
Для того, чтобы в жидкостях и газах происходила конвекция, необходимо их нагревать снизу.
Конвекция в твердых телах происходить не может.

Излучение

Излучение - электромагнитное излучение, испускаемое за счет внутренней энергии веществом, находящимся при определенной температуре.
Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно черного тела, описывается законом Стефана - Больцмана.
Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа.
Передача энергии излучением отличается от других видов теплопередачи: она может осуществляться в полном вакууме .
Излучают энергию все тела: и сильно нагретые, и слабо, например тело человека, печь, электрическая лампочка и др. Но чем выше температура тела, тем больше энергии передает оно путем излучения. При этом энергия частично поглощается этими телами, а частично отражается. При поглощении энергии тела нагреваются по-разному, в зависимости от состояния поверхности.
Тела с темной поверхностью лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность. В то же время тела с темной поверхностью охлаждаются быстрее путем излучения, чем тела со светлой поверхностью. Например, в светлом чайнике горячая вода дольше сохраняет высокую температуру, чем в темном.

Введение

ТЕПЛОТА, кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже).

Теплота играет важную роль в жизни человека, в том числе и в функционировании его организма. Часть химической энергии, содержащейся в пище, превращается в теплоту, благодаря чему температура тела поддерживается вблизи 37 градусов Цельсия. Тепловой баланс тела человека зависит также от температуры окружающей среды, и люди вынуждены расходовать много энергии на обогрев жилых и производственных помещений зимой и на охлаждение их летом. Большую часть этой энергии поставляют тепловые машины, например котельные установки и паровые турбины электростанций, работающих на ископаемом топливе (угле, нефти) и вырабатывающих электроэнергию.

До конца 18 в. теплоту считали материальной субстанцией, полагая, что температура тела определяется количеством содержащейся в нем «калорической жидкости», или «теплорода». Позднее Б.Румфорд, Дж.Джоуль и другие физики того времени путем остроумных опытов и рассуждений опровергли «калорическую» теорию, доказав, что теплота невесома и ее можно получать в любых количествах просто за счет механического движения. Теплота сама по себе не является веществом – это всего лишь энергия движения его атомов или молекул. Именно такого понимания теплоты придерживается современная физика.

ТЕПЛОПЕРЕДАЧА

Теплопередача – это процесс переноса теплоты внутри тела или от одного тела к другому, обусловленный разностью температур. Интенсивность переноса теплоты зависит от свойств вещества, разности температур и подчиняется экспериментально установленным законам природы. Чтобы создавать эффективно работающие системы нагрева или охлаждения, разнообразные двигатели, энергоустановки, системы теплоизоляции, нужно знать принципы теплопередачи. В одних случаях теплообмен нежелателен (теплоизоляция плавильных печей, космических кораблей и т.п.), а в других он должен быть как можно больше (паровые котлы, теплообменники, кухонная посуда).

ТРИ ОСНОВНЫХ ВИДА ПЕРЕДАЧИ ТЕПЛА

Существуют три основных вида теплопередачи: теплопроводность, конвекция и лучистый теплообмен.

1.Теплопроводность. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью; при достаточно высоких температурах в твердых телах его можно наблюдать визуально. Так, при нагревании стального стержня с одного конца в пламени газовой горелки тепловая энергия передается по стержню, и на некоторое расстояние от нагреваемого конца распространяется свечение (с удалением от места нагрева все менее интенсивное).

Интенсивность теплопередачи за счет теплопроводности зависит от градиента температуры, т.е. отношения DТ /Dx разности температур на концах стержня к расстоянию между ними. Она зависит также от площади поперечного сечения стержня (в м 2) и коэффициента теплопроводности материала [в соответствующих единицах Вт/(мDК)]. Соотношение между этими величинами было выведено французским математиком Ж.Фурье и имеет следующий вид:

где q – тепловой поток, k – коэффициент теплопроводности, а A – площадь поперечного сечения. Это соотношение называется законом теплопроводности Фурье; знак «минус» в нем указывает на то, что теплота передается в направлении, обратном градиенту температуры.

Из закона Фурье следует, что тепловой поток можно понизить, уменьшив одну из величин – коэффициент теплопроводности, площадь или градиент температуры. Для здания в зимних условиях последние величины практически постоянны, а поэтому для поддержания в помещении нужной температуры остается уменьшать теплопроводность стен, т.е. улучшать их теплоизоляцию.

ТЕПЛОПРОВОДНОСТЬ НЕКОТОРЫХ ВЕЩЕСТВ И МАТЕРИАЛОВ
Вещества и материалы Теплопроводность, Вт/(мD К)
Металлы
Алюминий
Бронза
Висмут 8,4
Вольфрам
Железо
Золото
Кадмий
Магний
Медь
Мышьяк
Никель
Платина
Ртуть
Свинец
Цинк
Другие материалы
Асбест 0,08
Бетон 0,59
Воздух 0,024
Гагачий пух (неплотный) 0,008
Дерево (орех) 0,209
Магнезия (MgO) 0,10
Опилки 0,059
Резина (губчатая) 0,038
Слюда 0,42
Стекло 0,75
Углерод (графит) 15,6

В таблице представлены коэффициенты теплопроводности некоторых веществ и материалов. Из таблицы видно, что одни металлы проводят тепло гораздо лучше других, но все они являются значительно лучшими проводниками тепла, чем воздух и пористые материалы.

Теплопроводность металлов обусловлена колебаниями кристаллической решетки и движением большого числа свободных электронов (называемых иногда электронным газом). Движение электронов ответственно и за электропроводность металлов, а потому неудивительно, что хорошие проводники тепла (например, серебро или медь) являются также хорошими проводниками электричества.

Тепловое и электрическое сопротивление многих веществ резко уменьшается при понижении температуры ниже температуры жидкого гелия (1,8 K). Это явление, называемое сверхпроводимостью, используется для повышения эффективности работы многих устройств – от приборов микроэлектроники до линий электропередачи и больших электромагнитов.

Конвекция.

Как мы уже говорили, при подводе тепла к жидкости или газу увеличивается интенсивность движения молекул, а вследствие этого повышается давление. Если жидкость или газ не ограничены в объеме, то они расширяются; локальная плотность жидкости (газа) становится меньше, и благодаря выталкивающим (архимедовым) силам нагретая часть среды движется вверх (именно поэтому теплый воздух в комнате поднимается от батарей к потолку). Данное явление называется конвекцией. Чтобы не расходовать тепло отопительной системы впустую, нужно пользоваться современными обогревателями, обеспечивающими принудительную циркуляцию воздуха.

Конвективный тепловой поток от нагревателя к нагреваемой среде зависит от начальной скорости движения молекул, плотности, вязкости, теплопроводности и теплоемкости и среды; очень важны также размер и форма нагревателя. Соотношение между соответствующими величинами подчиняется закону Ньютона

q = hA (T W  T ),

где q – тепловой поток (измеряемый в ваттах), A – площадь поверхности источника тепла (в м 2), T W и T  – температуры источника и его окружения (в кельвинах). Коэффициент конвективного теплопереноса h зависит от свойств среды, начальной скорости ее молекул, а также от формы источника тепла, и измеряется в единицах Вт/(м 2 хК).

Величина h неодинакова для случаев, когда воздух вокруг нагревателя неподвижен (свободная конвекция) и когда тот же нагреватель находится в воздушном потоке (вынужденная конвекция). В простых случаях течения жидкости по трубе или обтекания плоской поверхности коэффициент h можно рассчитать теоретически. Однако найти аналитическое решение задачи о конвекции для турбулентного течения среды пока не удается. Турбулентность – это сложное движение жидкости (газа), хаотичное в масштабах, существенно превышающих молекулярные.

Если нагретое (или, наоборот, холодное) тело поместить в неподвижную среду или в поток, то вокруг него образуются конвективные токи и пограничный слой. Температура, давление и скорость движения молекул в этом слое играют важную роль при определении коэффициента конвективного теплопереноса.

Конвекцию необходимо учитывать при проектировании теплообменников, систем кондиционирования воздуха, высокоскоростных летательных аппаратов и многих других устройств. Во всех подобных системах одновременно с конвекцией имеет место теплопроводность, причем как между твердыми телами, так и в окружающей их среде. При повышенных температурах существенную роль может играть и лучистый теплообмен.

3.Лучистый теплообмен. Третий вид теплопередачи – лучистый теплообмен – отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум. Сходство же его с другими способами передачи тепла в том, что он тоже обусловлен разностью температур. Тепловое излучение – это один из видов электромагнитного излучения. Другие его виды – радиоволновое, ультрафиолетовое и гамма-излучения – возникают в отсутствие разности температур.

На рис. 8 представлена зависимость энергии теплового (инфракрасного) излучения от длины волны. Тепловое излучение может сопровождаться испусканием видимого света, но его энергия мала по сравнению с энергией излучения невидимой части спектра.

Интенсивность теплопередачи путем теплопроводности и конвекции пропорциональна температуре, а лучистый тепловой поток пропорционален четвертой степени температуры и подчиняется закону Стефана – Больцмана

где, как и ранее, q – тепловой поток (в джоулях в секунду, т.е. в Вт), A – площадь поверхности излучающего тела (в м 2), а T 1 и T 2 – температуры (в кельвинах) излучающего тела и окружения, поглощающего это излучение. Коэффициент s называется постоянной Стефана – Больцмана и равен (5,66961х0,00096)х10 –8 Вт/(м 2 DК 4).

Представленный закон теплового излучения справедлив лишь для идеального излучателя – так называемого абсолютно черного тела. Ни одно реальное тело таковым не является, хотя плоская черная поверхность по своим свойствам приближается к абсолютно черному телу. Светлые же поверхности излучают сравнительно слабо. Чтобы учесть отклонение от идеальности многочисленных «серых» тел, в правую часть выражения, описывающего закон Стефана – Больцмана, вводят коэффициент, меньший единицы, называемый излучательной способностью. Для плоской черной поверхности этот коэффициент может достигать 0,98, а для полированного металлического зеркала не превышает 0,05. Соответственно лучепоглощательная способность высока для черного тела и низка для зеркального.

Жилые и офисные помещения часто обогревают небольшими электрическими теплоизлучателями; красноватое свечение их спиралей – это видимое тепловое излучение, близкое к границе инфракрасной части спектра. Помещение же обогревается теплотой, которую несет в основном невидимая, инфракрасная часть излучения. В приборах ночного видения применяются источник теплового излучения и приемник, чувствительный к ИК-излучению, позволяющий видеть в темноте.

Мощным излучателем тепловой энергии является Солнце; оно нагревает Землю даже на расстоянии 150 млн. км. Интенсивность солнечного излучения, регистрируемая год за годом станциями, расположенными во многих точках земного шара, составляет примерно 1,37 Вт/м 2 . Солнечная энергия – источник жизни на Земле. Ведутся поиски способов наиболее эффективного ее использования. Созданы солнечные батареи, позволяющие обогревать дома и получать электроэнергию для бытовых нужд.

Цели урока:

Общеобразовательная: обобщить основные знания по теме «Виды теплопередачи», познакомить восьмиклассников с проявлениями теплопроводности, конвекции, излучения в природе и технике;

Развивающая: продолжить формирование у обучающихся ключевых умений, имеющих универсальное значение для различных видов деятельности - выделение проблемы, принятие решения, поиска, анализа и обработки информации;

Воспитательная: воспитывать коллективизм, творческое отношение к порученному делу.

Подготовительная работа

Урок проводится в виде защиты учебных проектов по темам «Теплопроводность в природе и технике», «Конвекция в природе и технике», «Излучение в природе и технике». Ученики или учитель выбирают руководителя, который формирует на добровольных началах группу. Тема проекта определяется по соглашению или в результате жеребьевки.
Задание каждой группы включает теоретическое обоснование, эксперимент, мультимедийную презентацию.

Учащиеся самостоятельно распределяют обязанности, осуществляют поиск и сбор информации, ее анализ и представление, продумывают план эксперимента, подготавливают необходимое оборудование для его выполнения, обсуждают и объясняют наблюдаемое.
В ходе работы над проектом учитель и ученики тесно сотрудничают, в частности, проводятся консультации, на которых учитель осуществляет контроль и корректировку деятельности учащихся.

Оформление урока

Необходимо подготовить экран и мультимедийный проектор. На экран должен быть спроецирован слайд с названием темы урока. Оборудование для экспериментов следует разместить на демонстрационном столе.

Цели урока:

1. Образовательные:

Обобщить и систематизировать знания учащихся по теме: «Виды теплопередачи»;

Уметь описывать и объяснять такие физические явления, как теплопроводность, конвекция и излучение;

Уметь использовать полученные знания в повседневной жизни.

2. Развивающие:

Развитие слухового и зрительного восприятия;

Развитие мышления, речи, памяти, внимания;


Поиск, анализ и обработка информации. 


3. Воспитательные:

 Воспитание личностных качеств (аккуратности, умений работать в коллективе, дисциплинированности);

 воспитание познавательного интереса к предмету;


способствовать воспитанию всестороннеразвитой личности ребёнка.

Оборудование: экран и мультимедийный проектор, презентация; оборудование, подготовленное каждой группой.

Ход урока.


I . Организационный этап (2 мин.)

Цель: включить учащихся в учебную деятельность, определить содержательные рамки урока:

Ознакомление с планом урока.

II. Актуализация знаний учащихся (35 мин.)

(Сл.1)

Цель: актуализировать знания о видах теплопередачи, обобщить и систематизировать знания о теплопередачи, конвекции и излучении, применить полученные знания в повседневной жизни.

(Сл.2)

1. Что с точки зрения физики объединяет следующие пословицы? (на слайде)

А) За горячее железо нехватайся. Затем кузнец клещи куёт, чтоб рук не ожечь.

Б) Наша изба неравного тепла. На печи тепло, на полу холодно.

В) Красное солнышко на белом свете чёрную землю греет.

Ответ: внутренняя энергия тел изменяется в результате теплопередачи.

2. В чём различие с точки зрения физики явлений, о которых говорится в пословицах ?

Ответ: в этих пословицах говорится о разных способах передачи тепла.

А как называются различнык способы передачи тепла в физике? (Виды теплопередачи)

3. А теперь сформулируйте тему нашего урока.

Виды теплопередачи”

Учитель: На нашем уроке мы вспомним всё, что изучали по теме: «Виды теплопередачи». Сегодня мы обобщим, систематизируем и закрепим свои знания по данной теме. Полученные знания применим в повседневной жизни.

Построим систему знаний, элементы которой мы узнали при изучении данной темы. Представим это для наглядности в виде схемы.(шаблоны на партах учащихся).

Работаем вместе (заполняем вместе).

(Сл.3)

1) Как будет называться главная фигура, отражающая название темы и схемы?

Ш. - Виды теплопередачи.

У. - Зафиксируем это.Фигура 1-она будет главной в схеме; внесем в нее текст(название), выделим фигуру или текст цветом.

2) Что изменяется в результате теплопередачи? Какаой вид энергии изменяется в результате теплопередачи?

Ш. - Внутренняя энергия тел.

У. - Виды теплопередачи связаны с изменением внутренней энергией тел.

Зафиксируем это в фигуре 2.

3) Какому важному закону подчиняются виды теплопередачи, связанные с изменением внутренней энергии тел?

Ш. - Закону сохранения и превращения энергии.

У. - Верно. Запишем это в фигуре 3. Так как это - один из важнейших законов природы, фигуру 3 разместим над фигурами 1и 2.

4,5,6) С какими конкретными видами теплопередачи мы познакомились?

Ш. - Теплопроводность, конвекция, излучение.

У. - Правильно. Отразим это в схеме, а фигуры расположим под главной в один ряд, так как каждая соотносится с самостоятельным физическим явлением.

Остальные графы обобщающей таблицы, необходимо заполнить на протяжении всего урока, слушая выступления групп и используя полученные нами знания.

У. Наш урок посвящен защите учебных проектов. Мы повторим виды теплопередачи, познакомимся с проявлениями теплопроводности, конвекции, излучения в природе и технике. Три группы выбрали один из видов теплопередачи. Задание включало теорию, эксперимент и создание компьютерной презентации. По итогам защиты группа должна подготовить фотоотчет. Обратите внимание на то, что время защиты проекта не должно превышать 5-7мин.

4. Защита проектов.

(Сл.4)

1. О каком виде теплопередачи говорится в первой пословице?

(Сл.5) (теплопроводность) .

I группа

Теплопроводность - явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте.

Теплопроводность — вид теплообмена, при котором происходит передача внутренней энергии от частиц более нагретой части тела к частицам менее нагретой части.

Эксперимент

Демонстрация разной теплопроводности серебряной(деревянной) ложки и ложки из нержавеющей стали после нагревания их в горячей воде.

Разные вещества имеют разную теплопроводность. Теплопроводность у металлов хорошая. Например, медь используется при устройстве паяльников. Теплопроводность стали в 10 раз меньше теплопроводности меди. Малой теплопроводностью обладают древесина и некоторые виды пластмасс. Это их свойство используется при изготовлении ручек для нагревательных предметов, например, чайников, кастрюль и сковородок.

Плохой теплопроводностью обладают войлок, пористый кирпич шерсть, пух, мех (обусловленная наличием между их волокнами воздуха), поэтому эти материалы, наряду с древесиной, широко используются в жилищном строительстве.

Мы принесли различные теплоизоляционные материалы- паклю, пенопласт, которые применяют в строительстве. Регулирование теплообмена является одной из основных задач строительной техники. В тех случаях, когда теплообмен является нежелательным, его стараются уменьшить. Для этого используют теплоизоляцию.

Тонкий слой воздуха между оконными стеклами предохраняет наше жилище от холода так хорошо, как и кирпичная стена. Это говорит о том, что воздух обладает плохой теплопроводностью. У жидкостей и газов теплопроводность очень мала, но и а газах и в жидкостях может передаваться тепло.

Как вам ни покажется странным, но и, снег, особенно рыхлый, обладает очень плохой теплопроводностью. Этим объясняется то, что сравнительно тонкий слой снега предохраняет озимые посевы от вымерзания.

Мех животных из-за плохой теплопроводности предохраняет их от охлаждения зимой и перегрева летом.

(Сл.11) 2. А о каком виде теплопередачи говорится во второй пословице?

(Сл.12) (конвекция).

II группа

Конвекция - вид теплопередачи, при котором энергия переносится струями газа и жидкости.

Существует два вида конвекции: естественная и вынужденная.

Естественная конвекция - самопроизвольное охлаждение, нагревание, перемещение.

Вынужденная конвекция - перемещение с помощью насоса, мешалки и т.п.

Конвекция в жидкостях. Жидкости и газы нагреваются снизу, так как у них плохая теплопроводность. У горячих слоёв жидкости (газа) плотность уменьшается, и они поднимаются вверх, уступая место более холодным. Возникает циркуляция («движение по кругу») слоёв.

В твердых телах конвекции нет, так как их частицы не обладают большой подвижностью.

Много проявлений конвекции можно обнаружить в природе и жизни человека. Конвекция также находит применение в технике.

Эксперимент

Демонстрация горения свечи, которую частично накрывают стеклянным цилиндром без дна (внизу оставляют свободное пространство); прекращение горения свечи при полном опускании стеклянного цилиндра.

Эксперимент

На столе два стакана с горячей водой, один стоит на льду, а на крышке другого лежит лед. Учащиеся объясняют, в каком стакане вода остынет быстрее (конвекция в жидкостях).

И чтобы кипяток быстрее остыл, мы ложечкой размешиваем (вынужденная конвекция)

Нагревание и охлаждение жилых помещений основано на явлении конвекции. Так охлаждающие устройства целесообразно располагать наверху, ближе к потолку, чтобы осуществлялась естественная конвекция. Обогревательные приборы располагают внизу.

Бриз - возникает на границе суши и воды, т.к. они нагреваются и остывают по-разному. Вода нагревается и остывает медленнее, чем земля(песок) в 5 раз. Из-за этого днём над сушей образуется область низкого давления, а над морем - область высокого давления. Возникает движение воздушных масс из области высокого давления в область низкого давления, что и называется дневным бризом. Ночью все происходит наоборот.

(Сл.19 ) 3. А о каком виде теплопередачи говорится в третьей пословице?

(Сл.20) (излучение).

III группа

Излучение (лучистый теплообмен) - вид теплопередачи, при котором энергия переносится тепловыми лучами (электромагнитными волнами).

Происходит всегда и везде. Может осуществляться в полном вакууме.

Излучение происходит от всех нагретых тел (от человека, костра, печи и т..д.)

Чем больше температура тела, тем сильнее его тепловое излучение.

Тела не только излучают энергию, но и поглащают.

Тела с темной поверхностью лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность.

Солнце- источник энергии на Земле.

Как передается солнечное тепло на Землю? Ведь в космическом пространстве нет ни твердых, ни жидких, ни газообразных тел. Следовательно, космическое пространство не может передавать тепло Солнца на Землю ни путем теплопроводности, ни путем конвекции. Дело в том, что тепло от Солнца к Земле передается также как сигнал с радиостанции приемнику, - электромагнитными волнами.

Много проявлений теплового излучения можно обнаружить в природе и жизни человека. Тепловое излучение также находит применение в технике.

Способность тел по разному поглощать энергию излучения используется человеком.

Вспаханная почва, почва с растительностью (Слайд). Днем почва поглощает энергию и нагревается излучением, но быстрее и охлаждается. На ее нагревание и охлаждение влияет присутствие растительности. Так, темная вспаханная почва сильнее нагревается излучением, но быстрее и охлаждается, чем почва, покрытая растительностью.

На теплообмен между почвой и воздухом влияет также погода. В ясные, безоблачные ночи почва сильно охлаждается - излучение от почвы беспрепятственно уходит в пространство. В такие ночи ранней весной возможны заморозки на почве. Если же погода облачная, то облака закрывают Землю и играют роль своеобразных экранов, защищающих почву от потери энергии путем излучения.

Демонстрация макета теплицы. Одним из средств повышения температуры участка почвы и припочвенного воздуха служат теплицы, которые позволяют полнее использовать излучение Солнца. Участок почвы покрывают стеклянными рамами или прозрачными пленками. Стекло хорошо пропускает видимое солнечное излучение, которое, попадая на темную почву, нагревает ее, но хуже пропускает невидимое излучение, испускаемое нагретой поверхностью Земли. Также пленка (стекло) препятствует движению теплого воздуха вверх, т.е. осуществлению конвекции. Таким образом, стекла теплиц действуют как «ловушка» энергии. Внутри теплиц температура выше, чем на незащищенном грунте, примерно на 10° С.(обогревают теплицу лампой и измеряют температуру снаружи и внутри теплицы, и она оказывается различной).

Какой из чайников быстрее остынет?

Для чего самолёты красят серебряной краской, а душ на даче в темный?

(Сл. 26) Термос (строение)

- Как уберечь энергию? (объясняют принцип действия и устройство термоса, акцентируя внимание на видах теплопередачи.)

Пробка (Закрепить конвекцию)

Вакуум (Долой теплопроводность)

Зеркало (Прочь излучение)

(Сл.27)

5. Обсуждение результатов заполнения таблицы

III. Заключение (3 мин)

Подведение итогов по всем этапам работы.

Рефлексия учащихся.

IV На дом:

повторить § 3 - 6, продолжить заполнение табл. дома,

творческое задание: составить кроссворды по теме « Виды теплопередачи».

Желающие ученики могут подготовить к следующему уроку доклады о применении теплопередачи в природе и технике. Примерными темами докладов могут быть: «Значение видов теплопередачи в авиации и при полетах в космос», «Виды теплопередачи в быту», «Теплопередача в атмосфере», «Учет и использование видов теплопередачи в сельском хозяйстве» и др.

Рефлексия

Если вы поняли материал, можете его рассказать и объяснить, то поставьте себе “5”.

Если материал поняли, но есть некоторые сомнения в том, что вы сможете его воспроизвести, то “4”.

Если материал усвоен слабо, то “3”.

Поднимите «смайлики”. С каким настроением у нас закончился урок?

Рефлексия урока .

Учащимся предлагается заполнить листы рефлексии.

сегодня я узнал…

было интересно…

я приобрел…

меня удивило…

урок дал мне для жизни…

мне захотелось…и я

Подведение итогов урока, выставление отметок.

или

III. ЗАКЛЮЧИТЕЛЬНЫЙ ЭТАП (3 мин)

Цель: дать анализ и оценку успешности достижения цели и наметить перспективу последующей работы;; поблагодарить одноклассников, которые помогли получить результаты урока.

Теплопередача - это один из способов изменения внутренней энергии тела (или системы тел), при этом внутренняя энергия одного тела переходит во внутреннюю энергию другого тела без совершения механической работы.

Существует 3 вида теплопередачи:

Теплообмен между двумя средами происходит через разделяющую их твердую стенку или через поверхность раздела между ними.
Теплота способна переходить только от тела с более высокой температурой к телу менее нагретому.

Теплообмен всегда протекает так, что убыль внутренней энергии одних тел всегда сопровождается таким же приращением внутренней энергии других тел, участвующих в теплообмене.
Это является частным случаем закона сохранения энергии.

ИНТЕРЕСНО

Куропатки, утки и другие птицы зимой не мерзнут потому, что температура лап у них может отличаться от температуры тела более чем на 30 градусов. Низкая температура лап сильно понижает теплоотдачу. Таковы защитные силы организма!

Теплопроводность - это перенос энергии от более нагретых участков тела к менее нагретым за счет теплового движения и взаимодействия микрочастиц (атомов, молекул, ионов и т.п.), который приводит к выравниванию температуры тела.
Не сопровождается переносом вещества!

Этот вид передачи внутренней энергии характерен как для твердых веществ, так и для жидкостей и газов.
Теплопроводность различных веществ разная.
Металлы обладают самой высокой теплопроводностью,

причем у разных металлов теплопроводность отличается.

Жидкости обладают меньшей теплопроводностью, чем твердые тела, а газы меньшей, чем жидкости.

При нагревании верхнего конца закрытой пальцем пробирки с воздухом внутри можно не бояться обжечь палец, т.к. теплопроводность газов очень низкая.
Интересно, что можно было бы поднести руку почти вплотную к пламени, например, газовой горелки (температура больше 1000 градусов) и не обжечь ее, если бы …

А что если бы?

Газ, как правило, очень плохой проводник тепла, поэтому достаточно было бы лишь небольшой прослойки воздуха между рукой и пламенем. Но!
Но существует такое явление, как конвекция в газах, поэтому вблизи пламени руку сильно жжет.

ЗАГЛЯНИ НА КНИЖНУЮ ПОЛКУ

Знаешь ли ты, что...

Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины из-за подтаивания грунта под ними Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях. В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т.к. жидкость обладает низкой теплопроводностью. Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.
Это не сказка, не фантастика!
Такой проект реально разработан и испытан!

Итальянские ученые изобрели рубашку, позволяющую поддерживать постоянную температуру тела. Ученые обещают, что летом в ней не будет жарко, а зимой – холодно, поскольку она сшита из специальных материалов. Подобные материалы уже используются при космических полетах.

В старых пулеметах "Максим" нагревание воды предохраняло оружие от расплавления.

На кухне, поднимая посуду, наполненную горячей жидкостью, чтобы не обжечься, можно использовать только сухую тряпку. Теплопроводность воздуха намного меньше, чем у воды! А ткань структура очень рыхлая, и все прмежутки между волокнами заполнены у сухой тряпки воздухом, а у влажной - водой. Смотри, не обожгись!

Огонь в решете

Явление, о котором рассказано ниже демонстрирует свойство металлов хорошо проводить тепло.
Если изготовить сетку из проволоки, обеспечив хорошее соединение металла в местах перекрещивания проволоки, и поместить ее над газовой горелкой, то можно при включенном вентиле поджечь газ над сеткой, в то время как под сеткой он гореть не будет. А если зажечь газ под сеткой, то наверх через сетку огонь « не просочится»!

В те времена, когда еще не было электрических шахтерских лампочек, пользовались лампой Дэви.
Это была свеча, «посаженная» в металлическую клетку. И даже, если шахта наполнялась легковоспламеняющимися газами, лампа Дэви была безопасна и не вызывала взрыва - пламя не выходило за пределы лампы,благодаря металлической сетке.

Положить на лежащие рядом на столе кусок пенопласта (или дерева) и зеркало ладони, то ощущения от этих предметов будут разными: пенопласт покажется теплее, а зеркало - холоднее.
Почему?
Ведь температура окружающего воздуха одинаковая!
Стекло - хороший проводник тепла (обладает высокой теплопроводностью), и сразу начнет "отбирать" от руки тепло. Рука будет ощущать холод! Пенопласт хуже проводит тепло. Он тоже будет, нагреваясь, "отбирать" тепло у руки, но медленнее, поэтому и покажется теплее.


ДОМАШНИЕ ОПЫТЫ

Оберните толстый гвоздь или металлический стержень полоской бумаги в один слой. Подержите над пламенем свечи до момента возгорания, засеките время. Объясните, почему бумага загорелась не сразу.

Используйте свои руки как термодатчики – обследуйте окружающие вас предметы. Найдите самые холодные на ощупь, сделайте вывод об их теплопроводности. По своим ощущениям составьте список веществ, обладающих разной теплопроводностью, от самой хорошей до самой плохой.

Подберите ложки из разных материалов (алюминиевую, мельхиоровую, стальную, деревянную и т.д.). Опустите их наполовину в сосуд с горячей водой. Через 1–2 мин проверьте, одинаково ли нагрелись их ручки. Проанализируйте результат.

Приготовьте три одинаковых кусочка льда, один из них заверните в фольгу, второй – в бумагу, третий– в вату и оставьте на блюдцах в комнате. Определите время полного таяния. Объясните разницу.

Приготовьте в морозилке лед. Сложите его в целлофановый пакет и оберните пуховым платком или обложите ватой. Можно дополнительно завернуть в шубу. Оставьте этот сверток на 5–7 ч,затем проверьте сохранность льда. Объясните наблюдаемое состояние. Предложите дома способ сохранения замороженных продуктов при размораживании холодильника.


ЗАДАЧИ ДЛЯ УМЕЮЩИХ ДУМАТЬ

(или " покумекаем"?)

1. Какая почва прогревается солнцем быстрее: влажная или сухая? Почему?

2. Почему толстый человек в холодной воде меньше мерзнет, чем худой?

3. Человек не чувствует прохлады на воздухе при температуре 20 градусов Цельсия, но в воде мерзнет при температуре 25 градусов Цельсия. Почему?

4. Если зимой к замерзшему стеклу(покрытому инеем) трамвая или автобуса приложить на одинаковое время палец, а другим пальцем прижать монету, то площадь оттаивания под монетой окажется больше.
Почему?