Теория уровней построения движений Н. Бернштейна

Лекция 9

Физиология движений и физиология активности

Механизмы организации движений по Н. А. Бернштейну: принцип сенсорных коррекций, схема рефлекторного кольца, теория уровней

В этой и следующей лекциях вы познакомитесь с концепцией выдающегося советского ученого Н. А. Бернштейна. У нас есть целый ряд оснований обратиться к этой концепции.

В трудах Н. А. Бернштейна нашла блестящую разработку проблема механизмов организации движений и действий человека. Занимаясь этой проблемой, Н. А. Бернштейн обнаружил себя как очень психологично мыслящий физиолог (что бывает крайне редко). В результате его теория и выявленные им механизмы оказались органически сочетающимися с теорией деятельности, позволяя углубить наши представления о ее операционально-технических аспектах.

Но это далеко не все. Н. А. Бернштейн выступил в научной литературе как страстный защитник принципа активности – одного из тех принципов, на которых, как вы уже знаете, покоится психологическая теория деятельности. Мы разберем его идеи, высказанные в порядке защиты и развития этого принципа. Наконец, теория Н. А. Бернштейна окажется нам чрезвычайно полезной при обсуждении так называемой психофизической проблемы (лекция 13), где речь пойдет, в частности, о возможностях и ограничениях физиологического объяснения в психологии.

Николай Александрович Бернштейн (1896-1966) по образованию был врач-невропатолог, и в этом качестве он работал в госпиталях во время гражданской и Великой Отечественной войн. Но наиболее плодотворной оказалась его работа как экспериментатора и теоретика в целом ряде научных областей – физиологии, психофизиологии, биологии, кибернетике.

Это был человек очень разносторонних талантов: он увлекался математикой, музыкой, лингвистикой, инженерным делом. Однако все свои знания и способности он сконцентрировал на решении главной проблемы своей жизни – изучении движений человека и животных. Так, математические знания позволили ему стать основоположником современной биомеханики, в частности биомеханики спорта. Практика врача-невропатолога снабдила его огромным фактическим материалом, касающимся расстройств движений при различных заболеваниях и травмах центральной нервной системы. Занятия музыкой дали возможность подвергнуть тончайшему анализу движения пианиста и скрипача: он экспериментировал в том числе и на себе, наблюдая за прогрессом собственной фортепианной техники. Инженерные знания и навыки помогли Н. А. Бернштейну усовершенствовать методы регистрации движений – он создал ряд новых техник регистрации сложных движений. Наконец, лингвистические интересы, несомненно, сказались на стиле, которым написаны его научные труды: тексты Н. А. Бернштейна – одни из самых поэтичных образцов научной литературы. Его язык отличается сжатостью, четкостью и в то же время необыкновенной живостью и образностью. Конечно, все эти качества языка отражали и качества его мышления.


В 1947 г. вышла одна из основных книг Н. А. Бернштейна «О построении движения», которая была удостоена Государственной премии. На титуле книги стояло посвящение: «Светлой, неугасающей памяти товарищей, отдавших свою жизнь в борьбе за Советскую Родину».

В этой книге были отражены итоги почти тридцатилетней работы автора и его сотрудников в области экспериментальных, клинических и теоретических исследований движений и высказан ряд совершенно новых идей.

Одна из них состояла в опровержении принципа рефлекторной дуги как механизма организации движений и замене его принципом рефлекторного кольца, о чем я буду говорить более подробно. Этот пункт концепции Н. А. Бернштейна содержал, таким образом, критику господствовавшей в то время в физиологии высшей нервной деятельности точки зрения на механизм условного рефлекса как на универсальный принцип анализа высшей нервной деятельности.

Вскоре для Н. А. Бернштейна настали трудные годы. На организованных дискуссиях подчас некорректно и некомпетентно выступали коллеги и даже некоторые бывшие ученики Н. А. Бернштейна с критикой его новых идей. В этот тяжелый для себя период Николай Александрович не отказался ни от одной своей идеи, заплатив за это, как потом выяснилось, потерей навсегда возможности вести экспериментально-исследовательскую работу.

Последний период жизни Н. А. Бернштейн был занят особой деятельностью. К нему домой шли ученые и научные работники разных профессий: врачи, физиологи, математики, кибернетики, музыканты, лингвисты – для научных бесед. Они искали у него советов, оценок, консультаций, новых точек зрения. (Об этом вы можете подробно прочесть в статье В. Л. Найдина «Чудо, которое всегда с тобой» (79).) Другую половину дня Н. А. Бернштейн был занят собственной научной, теоретической работой – он подводил итоги и снова осмысливал результаты, полученные в предыдущие периоды своей жизни.

Уже после его смерти многие узнали, что за два года до кончины Н. А. Бернштейн сам поставил себе диагноз – рак печени, после чего снялся с учета из всех поликлиник и строго расписал оставшийся срок жизни, который он тоже определил с точностью до месяца. Он успел закончить и даже просмотреть гранки своей последней книги «Очерки по физиологии движений и физиологии активности» (15).

Известный русский психиатр П. Б. Ганнушкин, характеризуя один из типов человеческих личностей, писал: «Здесь можно найти людей, занимающих позиции на тех вершинах царства идей, в разреженном воздухе которого трудно дышать обыкновенному человеку. Сюда относятся: уточненные художники-эстеты… глубокомысленные метафизики, наконец, талантливые ученые-схематики и гениальные революционеры в науке, благодаря своей способности к неожиданным сопоставлениям с бестрепетной отвагой преображающие, иногда до неузнаваемости, лицо той дисциплины, в которой они работают» (25, с. 386). Читая эти строки, сразу вспоминаешь Н. А. Бернштейна: именно талантливый ученый-революционер, именно преобразивший до неузнаваемости дисциплину и именно «с бестрепетной отвагой»!

А теперь рассмотрим содержательно некоторые основные положения концепции Н. А. Бернштейна.

Залог успеха работ Бернштейна состоял в том, что он отказался от традиционных методов исследования движений. До него движения, как правило, загонялись в прокрустово ложе лабораторных процедур и установок; при их исследовании часто производилась перерезка нервов, разрушение центров, внешнее обездвижение животного (за исключением той части тела, которая интересовала экспериментатора), лягушек обезглавливали, собак привязывали к станку и т. п.

Объектом изучения Н. А. Бернштейн сделал естественные движения нормального, неповрежденного организма, и в основном движения человека. Таким образом, сразу определился контингент движений, которыми он занимался; это были движения трудовые, спортивные, бытовые. Конечно, потребовалась разработка специальных методов регистрации движений, что с успехом осуществил Бернштейн.

До работ Н. А. Бернштейна в физиологии бытовало мнение (которое излагалось и в учебниках), что двигательный акт организуется следующим образом: на этапе обучения движению в двигательных центрах формируется и фиксируется его программа; затем в результате действия какого-то стимула она возбуждается, в мышцы идут моторные командные импульсы, и движение реализуется. Таким образом, в самом общем виде механизм движения описывался схемой рефлекторной дуги: стимул – процесс его центральной переработки (возбуждение программ) – двигательная реакция.

Первый вывод, к которому пришел Н. А. Бернштейн, состоял в том, что так не может осуществляться сколько-нибудь сложное движение. Вообще говоря, очень простое движение, например коленный рефлекс или отдергивание руки от огня, может произойти в результате прямого проведения моторных команд от центра к периферии. Но сложные двигательные акты, которые призваны решить какую-то задачу, достичь какого-то результата, так строиться не могут. Главная причина состоит в том, что результат любого сложного движения зависит не только от собственно управляющих сигналов, но и от целого ряда дополнительных факторов. Какие это факторы, я скажу несколько позже, а сейчас отмечу только их общее свойство: все они вносят отклонения в запланированный ход движения, сами же не поддаются предварительному учету. В результате окончательная цель движения может быть достигнута, только если в него будут постоянно вноситься поправки, или коррекции. А для этого ЦНС должна знать, какова реальная судьба текущего движения. Иными словами, в ЦНС должны непрерывно поступать афферентные сигналы, содержащие информацию о реальном ходе движения, а затем перерабатываться в сигналы коррекции.

Таким образом, Н. А. Бернштейном был предложен совершенно новый принцип управления движениями. Он назвал его принципом сенсорных коррекций, имея в виду коррекции, вносимые в моторные импульсы на основе сенсорной информации о ходе движения.

А теперь познакомимся с дополнительными факторами, которые, помимо моторных команд, влияют на ход движения.

Во-первых, это реактивные силы. Если вы сильно взмахнете рукой, то в других частях тела разовьются реактивные силы, которые изменят их положение и тонус.

Это хорошо видно в тех случаях, когда у вас под ногами нетвердая опора. Неопытный человек, стоя на льду, рискует упасть, если слишком сильно ударит клюшкой по шайбе, хотя, конечно, это падение никак не запланировано в его моторных центрах. Если ребенок залезает на диван и начинает с него бросать мяч, то мать тут же спускает его вниз; она знает, что бросив мяч, он может сам полететь с дивана; виной опять будут реактивные силы.

Во-вторых, это инерционные силы. Если вы резко поднимете руку, то она взлетает не только за счет тех моторных импульсов, которые посланы в мышцы, но с какого-то момента движется по инерции. Влияние инерционных сил особенно велико в тех случаях, когда человек работает тяжелым орудием – топором, молотом и т. п. Но они имеют место и в любом другом движении. Например, при беге значительная часть движения выносимой вперед ноги происходит за счет этих сил.

В-третьих, это внешние силы. Если движение направлено на объект, то оно обязательно встречается с его сопротивлением, причем это сопротивление далеко не всегда предсказуемо. Представьте себе, что вы натираете пол, производя скользящие движения ногой. Сопротивление пола в каждый момент может отличаться от предыдущего, и заранее знать его вы никак не можете. То же самое при работе резцом, рубанком, отверткой. Во всех этих и многих других случаях нельзя заложить в моторные программы учет меняющихся внешних сил.

Наконец, последний непланируемый фактор – исходное состояние мышцы.

Состояние мышцы меняется по ходу движения вместе с изменением ее длины, а также в результате утомления. Поэтому один и тот же управляющий импульс, придя к мышце, может дать совершенно разный моторный эффект.

Итак, действие всех перечисленных факторов обусловливает необходимость непрерывного учета информации о состоянии двигательного аппарата и о непосредственном ходе движения. Эта информация получила название «сигналов обратной связи». Кстати, роль сигналов обратной связи в управлении движениями, как и в задачах управления вообще, Н. А. Бернштейн описал задолго до появления аналогичных идей в кибернетике.

Тезис о том, что без учета информации о движении последнее не может осуществляться, имеет веские фактические подтверждения.

Рассмотрим два примера. Первый я беру из монографии Н. А. Бернштейна (14).

Есть такое заболевание – сухотка спинного мозга, при котором поражаются проводящие пути проприоцептивной, т. е. мышечной и суставной, а также кожной чувствительности. При этом больной имеет совершенно сохранную моторную систему: моторные центры целы, моторные проводящие пути в спинном мозге сохранны, его мышцы находятся в нормальном состоянии. Нет только афферентных сигналов от опорно-двигательного аппарата. И в результате движения оказываются полностью расстроены. Так, если больной закрывает глаза, то он не может ходить; также с закрытыми глазами он не может удержать стакан – тот у него выскальзывает из рук. Все это происходит потому, что субъект не знает, в каком положении находятся, например, его ноги, руки или другие части тела, движутся они или нет, каков тонус и состояние мышц и т. п. Но если такой пациент открывает глаза и если ему еще на полу чертят полоски, по которым он должен пройти (т. е. организуют зрительную информацию о его собственных движениях), то он идет более или менее успешно. То же происходит с различными ручными движениями.

Другой пример я беру из относительно новых экспериментальных исследований организации речевых движений.

Когда человек говорит, то он получает сигналы обратной связи о работе своего артикуляционного аппарата в двух формах: в форме тех же проприоцептивных сигналов (мы имеем чувствительные «датчики» в мышцах гортани языка, всей ротовой полости) и в форме слуховых сигналов.

Вообще сигналы обратной связи от движений часто запараллелены, т. е. они поступают одновременно по нескольким каналам. Например, когда человек идет, то ощущает свои шаги с помощью мышечного чувства и одновременно может их видеть и слышать. Так же и в обсуждаемом случае: воспринимая проприоцептивные сигналы от своих речевых движений, человек одновременно отчетливо слышит звуки своей речи. Я сейчас докажу, что и те и другие сигналы используются для организации речевых движений.

Современная лабораторная техника позволяет поставить человека в совершенно необычные условия. Испытуемому предлагают произносить какой-нибудь текст, например знакомое стихотворение. Этот текст через микрофон подают ему в наушники, но с некоторым запаздыванием; таким образом, испытуемый слышит то, что он говорил несколько секунд назад, а то, что говорит в данный момент, он не слышит. Оказывается, что в этих условиях речь человека полностью расстраивается; он оказывается неспособным вообще что-либо говорить!

В чем здесь дело? Нельзя сказать, что в описанных опытах испытуемый лишен сигналов обратной связи: оба чувствительных канала – мышечный и слуховой – функционируют. Дело все в том, что по ним поступает несогласованная, противоречивая информация. Так что на основании одной информации следовало бы производить одно речевое движение, а на основании другой – другое движение. В результате испытуемый не может произвести никакого движения.

Замечу, что описанный прием «сшибки» сигналов обратной связи используют для выявления лиц, симулирующих глухоту: если человек действительно не слышит, то задержка сигналов обратной связи по слуховому каналу не вызывает у него никакого расстройства речи; если же он только притворяется неслышащим, то этот прием действует безотказно.

Перейдем к следующему важному пункту теории Н.А.Бернштейна – к схеме рефлекторного кольца. Эта схема непосредственно вытекает из принципа сенсорных коррекций и служит его дальнейшим развитием.

Рассмотрим сначала упрощенный вариант этой схемы (рис. 6, а ).

Имеется моторный центр (М), из которого поступают эффекторные команды в мышцу. Изобразим ее блоком внизу, имея в виду также рабочую точку движущегося органа (т). От рабочей точки идут сигналы обратной связи в сенсорный центр (S); это чувствительные, или афферентные, сигналы. В ЦНС происходит переработка поступившей информации, т. е. перешифровка ее на моторные сигналы коррекции. Эти сигналы снова поступают в мышцу. Получается кольцевой процесс управления.

Данная схема станет более понятной, если ввести временну́ю развертку процесса (рис. 6, б). Предположим, что только что сказанное относится к моменту t1; новые эффекторные сигналы приводят к перемещению рабочей точки по заданной траектории (момент t2 ), и т. д.

Как классическая схема рефлекторной дуги соотносится с таким «кольцом»? Можно сказать, что она представляет собой частный, притом «вырожденный», случай кольца: по схеме дуги совершаются жестко запрограммированные, элементарные кратковременные акты, которые не нуждаются в коррекциях. Я уже упоминала о них: это движения типа коленного рефлекса, мигания и т. п. Обратная афферентация в них теряет свое значение, и определяющую роль приобретает внешний пусковой сигнал (рис. 6, в). Для большинства же движений необходимо функционирование кольца.

Теперь обратимся к более позднему варианту схемы «кольца» Н. А. Бернштейна; она более детализована и поэтому позволяет гораздо полнее представить процесс управления двигательными актами (рис. 7).

Имеются моторные «выходы» (эффектор), сенсорные «входы» (рецептор), рабочая точка или объект (если речь идет о предметном действии) и блок перешифровок. Новыми являются несколько центральных блоков – программа, задающий прибор и прибор сличения.

Кольцо функционирует следующим образом. В программе записаны последовательные этапы сложного движения. В каждый данный момент отрабатывается какой-то ее частный этап, или элемент, и соответствующая частная программа спускается в задающий прибор.

Из задающего прибора сигналы поступают на прибор сличения; Н. А. Бернштейн обозначает их двумя латинскими буквами SW (от нем. Soll Wert, что означает «то, что должно быть»). На тот же блок от рецептора приходят сигналы обратной связи, сообщающие о состоянии рабочей точки; они обозначены IW (от нем. Ist Wert, что означает «то, что есть»). В приборе сличения эти сигналы сравниваются, и на выходе из него получаются DW, т. е. сигналы рассогласования между требуемым и фактическим положением вещей. Они попадают на блок перешифровки, откуда выходят сигналы коррекции; через промежуточные центральные инстанции (регулятор) они попадают на эффектор.

Разберем функционирование кольца управления на примере какого-нибудь реального движения.

Предположим, гимнаст работает на кольцах. Вся комбинация целиком содержится в его двигательной программе. В соответствии с программой ему нужно в какой-то момент сделать стойку на руках (кстати, труднейший элемент!).

Из программы спускается в задающий прибор соответствующий приказ, и в нем формируются сигналы SW, которые идут на прибор сличения. Эти сигналы будут сличаться с афферентными сигналами (IW). Значит, сами они должны иметь сенсорно-перцептивную природу, т. е. представлять собой образ движения. Такой образ обеспечивается прежде всего сигналами проприоцептивной и зрительной модальностей; это «картина» стойки и с точки зрения ее общего вида, и с точки зрения ее двигательно-технического состава – положения, частей тела, центра тяжести, распределения тонуса различных мышц и т. п.

Итак, в прибор сличения поступают и образ движения, и информация от всех рецепторов о реализованном движении.

Предположим, что, выходя на стойку, спортсмен сделал слишком сильный мах и его начало клонить назад, – возникает опасность опрокинуться. Что тогда происходит? С прибора сличения поступили на блок перешифровки сигналы об излишней тяге назад. Эти сигналы ( DW) сообщают, что не все в порядке, что нужно послать сигналы коррекции, выправляющие это положение. Такие сигналы поступают, поправка происходит. В следующем цикле кольца снова сличаются сигналы SW и IW. Может оказаться, что DW = 0; это идеальный случай. Он означает, что данный элемент выполнен и можно перейти к реализации следующего пункта программы.

На схеме Бернштейна можно видеть одну интересную стрелку, которая идет от рецептора на задающий прибор. Она означает следующее: по ходу движения случаются такие ситуации, когда экономичнее не давать коррекции к текущему движению, а просто перестроить его, пустить по другому руслу, т. е. изменить его частную программу. Тогда соответствующее решение принимается в микроинтервалы времени, и в этом обнаруживается двигательная находчивость организма. Таким образом, может иметь место не только спокойный «спуск» частных программ в задающее устройство, но и экстренная их перестройка. Я думаю, что подобные примеры вы легко найдете сами. Такое случается в условиях борьбы хищника и жертвы, встречи боксеров, в спортивных играх и т. п., где ситуация постоянно меняется.

Итак, были разобраны принцип сенсорных коррекций и вытекающая из этого принципа схема управления по рефлекторному кольцу.

Перейду к следующему крупному вкладу Н. А. Бернштейна – к теории уровней построения движений.

К этой теории можно перекинуть логический мост от рефлекторного кольца, если обратить специальное внимание на качество афферентных сигналов, поступающих от движения.

Специально исследуя этот вопрос на очень обширном материале с привлечением данных фило– и онтогенеза, патологии и экспериментальных исследований, Н. А. Бернштейн обнаружил следующее. В зависимости от того, какую информацию несут сигналы обратной связи: сообщают ли они о степени напряжения мышц, об относительном положении частей тела, о скорости или ускорении движения рабочей точки, о ее пространственном положении, о предметном результате движения, – афферентные сигналы приходят в разные чувствительные центры головного мозга и соответственно переключаются на моторные пути на разных уровнях. Причем под уровнями следует понимать буквально морфологические «слои» в ЦНС. Так были выделены уровни спинного и продолговатого мозга, уровень подкорковых центров, уровни коры. Но я не буду сейчас вдаваться в анатомические подробности, поскольку они требуют специальных знаний. Остановлюсь лишь на краткой характеристике каждого из уровней, выделенных Н. А. Бернштейном, и проиллюстрирую их на примерах.

Надо сказать, что каждый уровень имеет специфические, свойственные только ему моторные проявления, каждому уровню соответствует свой класс движений.

Уровень А – самый низкий и филогенетически самый древний. У человека он не имеет самостоятельного значения, зато заведует очень важным аспектом любого движения – тонусом мышц. Он участвует в организации любого движения совместно с другими уровнями.

Правда, есть немногочисленные движения, которые регулируются уровнем А самостоятельно: это непроизвольная дрожь, стук зубами от холода и страха, быстрые вибрато (7–8 гц) в фортепианной игре, дрожания пальца скрипача, удержание позы в полетной фазе прыжка и др.

На этот уровень поступают сигналы от мышечных проприорецепторов, которые сообщают о степени напряжения мышц, а также от органов равновесия.

Уровень В. Бернштейн называет его уровнем синергий. На этом уровне перерабатываются в основном сигналы от мышечно-суставных рецепторов, которые сообщают о взаимном положении и движении частей тела. Этот уровень, таким образом, оторван от внешнего пространства, но зато очень хорошо «осведомлен» о том, что делается «в пространстве тела».

Уровень В принимает большое участие в организации движений более высоких уровней, и там он берет на себя задачу внутренней координации сложных двигательных ансамблей. К собственным движениям этого уровня относятся такие, которые не требуют учета внешнего пространства: вольная гимнастика; потягивания, мимика и др.

Уровень С. Бернштейн называет его уровнем пространственного поля. На него поступают сигналы от зрения, слуха, осязания, т. е. вся информация о внешнем пространстве. Поэтому на нем строятся движения, приспособленные к пространственным свойствам объектов – к их форме, положению, длине, весу и пр. Среди них все переместительные движения: ходьба, лазанье, бег, прыжки, различные акробатические движения; упражнения на гимнастических снарядах; движения рук пианиста или машинистки; баллистические движения – метание гранаты, броски мяча, игра в теннис и городки; движения прицеливания – игра на бильярде, наводка подзорной трубы, стрельба из винтовки; броски вратаря на мяч.

Уровень D назван уровнем предметных действий. Это корковый уровень, который заведует организацией действий с предметами. Он практически монопольно принадлежит человеку. К нему относятся все орудийные действия, манипуляции с предметами. Примерами могут служить движения жонглера, фехтовальщика; все бытовые движения: шнуровка ботинок, завязывание галстука, чистка картошки; работа гравера, хирурга, часовщика; управление автомобилем и т. п.

Характерная особенность движений этого уровня в том, что они сообразуются с логикой предмета. Это уже не столько движения, сколько действия; в них совсем не фиксирован двигательный состав, или «узор», движения, а задан лишь конечный предметный результат. Для этого уровня безразличен способ выполнения действия, набор двигательных операций. Так, именно средствами данного уровня Н. Паганини мог играть на одной струне, когда у него лопались остальные. Более распространенный бытовой пример – разные способы открывания бутылки: вы можете прибегнуть к помощи штопора, ножа, выбить пробку ударом по дну, протолкнуть ее внутрь и т. п. Во всех случаях конкретные движения будут разные, но конечный результат действия – одинаковый. И в этом смысле к работе уровня D очень подходит пословица: «Не мытьем, так катаньем».

Наконец, последний, самый высокий – уровень Е. Это уровень интеллектуальных двигательных актов, в первую очередь речевых движений, движений письма, а также движения символической, или кодированной, речи – жестов глухонемых, азбуки Морзе. Движения этого уровня определяются не предметным, а отвлеченным, вербальным смыслом.

Теперь сделаю два важных замечания относительно функционирования уровней.

Первое: в организации сложных движений участвуют, как правило, сразу несколько уровней – тот, на котором строится данное движение (он называется ведущим), и все нижележащие уровни.

К примеру, письмо – это сложное движение, в котором участвуют все пять уровней. Проследим их, двигаясь снизу вверх.

Уровень А обеспечивает прежде всего тонус руки и пальцев.

Уровень В придает движениям письма плавную округлость, обеспечивая скоропись. Если переложить пишущую ручку в левую руку, то округлость и плавность движений исчезает: дело в том, что уровень. В отличается фиксацией «штампов», которые выработались в результате тренировки и которые не переносятся на другие двигательные органы (интересно, что при потере плавности индивидуальные особенности почерка сохраняются и в левой руке, потому что они зависят от других, более высоких уровней). Так что этим способом можно вычленить вклад уровня В.

Уровень D обеспечивает правильное владение ручкой, наконец, уровень Е – смысловую сторону письма.

Развивая это положение о совместном функционировании уровней, Н. А. Бернштейн приходит к следующему важному правилу: в сознании человека представлены только те компоненты движения, которые строятся на ведущем уровне; работа нижележащих, или «фоновых», уровней, как правило, не осознается.

Когда субъект излагает на бумаге свои мысли, то он осознает смысл письма: ведущим уровнем, на котором строятся его графические движения, в этом случае является уровень Е. Что касается особенностей почерка, формы отдельных букв, прямолинейности строк и т. п., то все это в его сознании практически не присутствует.

Второе замечание: формально одно и то же движение может строиться на разных ведущих уровнях.

Проиллюстрирую это следующим примером, заимствуя его у Н. А. Бернштейна. Возьмем круговое движение руки; оно может быть получено на уровне А: например, при фортепианном вибрато кисть руки и суставы пальцев описывают маленькие круговые траектории. Круговое движение можно построить и на уровне В, например включив его в качестве элемента в вольную гимнастику.

На уровне С будет строиться круговое движение при обведении контура заданного круга. На уровне предметного действия D круговое движение может возникнуть при завязывании узла. Наконец, на уровне Е такое же движение организуется, например, при изображении лектором окружности на доске. Лектор не заботится, как заботился бы учитель рисования, о том, чтобы окружность была метрически правильной, для него достаточно воспроизведения смысловой схемы.

А теперь возникает вопрос: чем же определяется факт построения движения на том или другом уровне? Ответом будет очень важный вывод Н. А. Бернштейна, который дан выше: ведущий уровень построения движения определяется смыслом, или задачей, движения.

Яркая иллюстрация этого положения содержится в исследовании А. Н. Леонтьева и А. В. Запорожца (59). Работая в годы Великой Отечественной войны над восстановлением движений руки раненых бойцов, авторы обнаружили следующий замечательный факт.

После периода лечебных упражнений с раненым проводилась проба для выяснения того, насколько функция руки восстановилась. Для этого ему давалась задача «поднять руку как можно выше». Выполняя ее, он поднимал руку только до определенного предела – диапазон движений был сильно ограничен. Но задача менялась: больного просили «поднять руку до указанной отметки на стене», и тогда оказывалось, что он в состоянии поднять руку на 10-15 см выше. Наконец, снова менялась задача: предлагалось «снять шляпу с крючка» – и рука поднималась еще выше!

В чем здесь дело? Дело в том, что во всех перечисленных случаях движение строилось на разных уровнях: первое движение («как можно выше») – в координатах тела, т. е. на уровне В; второе («до этой отметки») – на уровне С, т. е. в координатах внешнего пространства; наконец, третье («снимите шляпу») – на уровне D). Проявлялась смена уровней в том, что движение приобретало новые характеристики, в частности осуществлялось со все большей амплитудой.

Аналогичные факты известны теперь в большом количестве. Приведу еще один пример из наших собственных исследований, относящихся к движениям глаз (29).

Человеческие глаза, как известно, очень подвижны, и их движения очень разнообразны. Среди этих движений есть и такие, которые субъект не замечает; их нельзя заметить также, глядя в глаза другого человека со стороны; это – непроизвольные микродвижения глаз. Они происходят и тогда, когда человек, как ему кажется, неподвижно смотрит на точку, т. е. фиксирует ее взглядом. Для выявления этих движений приходится прибегать к очень тонким и точным методам регистрации.

С помощью таких методов давно было обнаружено, что при фиксации точки глаза совершают движения трех разных типов: тремор с очень большой частотой, дрейфы и скачки, которые обычно возвращают глаз, сместившийся в результате дрейфа, на фиксируемую точку. Каждый из этих типов движений имеет свои параметры: частоту, амплитуду, скорость и др.

Факт, который удалось установить нам, состоит в том, что при изменении задачи существенно меняются все параметры перечисленных движений глаз. Например, в одном случае испытуемому предлагалось «просто смотреть» на световую точку, в другом – «обнаруживать моменты, когда будет меняться ее цвет».

Заметьте, задача менялась, казалось бы, очень незначительно: во втором случае, как и в первом, испытуемый должен был фиксировать точку, чтобы не пропустить смену цвета. И тем не менее изменение цели (смысла) фиксации приводило к изменениям фиксационных движений: другим становился частотный спектр тремора, скорость дрейфов уменьшалась, скачки происходили реже и с меньшей амплитудой.

Подобные факты, как и общий вывод из них, замечательны тем, что показывают решающее влияние такой психологической категории, как задача, или цель, движения на организацию и протекание физиологических процессов.

Этот результат явился крупным научным вкладом

Н. А. Бернштейна в физиологию движений.


Примерно в то же время, т. е. в середине 30-х годов, наличие сигналов обратной связи в контуре управления физиологическими актами было описано другим советским физиологом, П. К. Анохиным, под названием «санкционирующая афферентация» (7).

Для пояснения этого момента удобно дополнить схему Н. А. Бернштейна соответствующей стрелкой (DW = 0 на рис. 7).

Уровни построения движений. Сенсорные коррекции и два цикла взаимодействий как принцип саморегуляции двигательной системы в норме и патологии. Теория воспитания навыка. Классификация двигательных расстройств при ДЦП по признаку дефектного уровня координации.
Движение - качество, присущее всему живому, будь это ток жидкости в растениях, кровяных клеток в сосудистом русле, перемещение животных и человека в пространстве или социально обусловленные действия индивидуума.
Становление движения, совершенствование его качеств, таких, как скорость, точность, плавность и т. д., суть процесс, подчиняющийся универсальным законам построения движений. В основе его лежит совершенствование координаций (совместный - от лат. ordinatio - упорядочивание, взаимосвязь, приведение в соответствие. В биологии - соотносительное развитие органов и частей организма в их историческом развитии).
Законы построения движений впервые определены нашим соотечественником Н.А.Бернштейном в сороковых - пятидесятых годах. Энциклопедия сообщает: “Бернштейн Николай Александрович (1896- 1966) - нейро- и психофизиолог, создатель физиологии активности. Его исследования по физиологии движений стали теоретической основой современной биомеханики, некоторые его идеи предвосхитили ряд положений кибернетики”. На основе выведенных им законов развивалась наука об искусственных управляющих системах, манипуляторах, роботах. Научная судьба его, к сожалению, напоминает судьбу прогрессивных биологов н генетиков того времени.
Принципы Бернштейна затем расшифровывались и конкретизировались множеством исследователей (Анохин П.К., Гурфинкель В.С., 1960, и др.).
Движения человека имеют в своем развитии начало, период, когда качества движения (скорость, точность и др.) достигают совершенства, и инволюцию - угасание, потерю этих качеств.
Наиболее заметен этот принцип в формировании локомоции, в частности, ходьбы (локомоция - от лат. lokus - место и motio - движение. В биологии - это циклически повторяющаяся закономерная сумма автоматических движений, обеспечивающих активное передвижение в пространстве, - ходьба, плавание, полет птиц и т. д.).
Мы все наблюдали, как неуклюжие, неточные движения ребенка 1 - 1,5 лет становятся по-своему милыми и грациозными к 3 - 5 годам.
В возрасте пубертатагормональные, возмущения снова делают движения угловатыми, резкими, неловкими. К старости механизмы управления изнашиваются, и движения становятся суетливыми, неуверенными. Пожилой человек долго топчется перед тем, как спуститься с подножки автобуса, перешагнуть лужу, как бы примериваясь к пространству. Сохранить устойчивость при ходьбе все труднее, и старый человек намеренно сокращает переносной период шага, т. к. опора на одну ногу в этот момент несет в себе риск потери устойчивости - походка становится шаркающей.
Известно огромное влияние эмоций на рисунок движений: ходьба пленного и победителя не сравнима, хотя состоит из одинаковых структурных элементов. Движения балерины, мима - это безмолвное выражение всей гаммы чувств от трагедии до триумфа, глухонемым движения рук и лица заменяют речь. Движениями можно изобразить умирающего лебедя и даже растаявшее мороженое и высыхающий сыр.
Такое совершенство движений не наследуется. Младенец не имеет качественных характеристик движений отца и матери. Он вновь проходит весь путь развития движений - от самых примитивных до высококоординированных и социально значимых действий. Каков этот путь, как он связан с развитием структур мозга и периферических механизмов, каким образом происходит развитие навыка, совершенствование качеств движения - на эти вопросы отвечает теория построения движений, предложенная Бернштейном. Она включает в себя несколько основных положений:
первое положение - о единстве онто- и филогенеза движений; второе положение - о ступенчатом развитии движений, об уровнях построения движений в ЦНС;
третье положение - о рефлекторном кольце и сенсорных коррекциях;
четвертое положение - о двух циклах взаимодействия; пятое положение - о развитии навыка.
Остановимся подробнее на каждом из этих постулатов.
Движение - свойство, общее для всего животного мира. В конечном итоге - это борьба за жизнь. От качеств движения зависит - “тебя съедят или ты съешь”, что и составляет сущность закона о естественном отборе: выживает сильнейший, обладающий высокой скоростью, ловкостью, выносливостью, быстротой реакции, умением попасть в цель, защищенный панцирем и т. д. Поэтому так сложны, многократно дублированы на всех этапах развития структуры головного мозга, управляющие движением, поэтому так длителен и тщателен процесс совершенствования механизмов координации и поэтому при локальных поражениях мозга травмой или болезнью движение, хотя и приобретает патологический характер, но не исчезает совсем. Природа не утрачивает в этом процессе ни одного из своих более ранних приобретений.
Формирование движений человека, локомоции в том числе, в онтогенезе повторяют филогенез (онтогенез - от греч. ontos - сущее н genesis - происхождение. В биологии онтогенез - процесс индини дуального развития, филогенез (от греч. phylon - род, племя) историческое развитие мира организмов - видов, классов и т. д.).
В филогенезе процесс управления, координации действий берп свое начало в одноклеточных организмах, где сигнал об опасности или близости добычи передается контактным путем, каким является хемотаксис (от греч. chemo - химия и tachis - устройство). В биологии хемотаксис - движение простейших организмов под влиянием изменения концентрации химических раздражителей. Ответ на раздражение возможен только в непосредственной близости от раздражителя. Следующий этап эволюции - многоклеточные организмы. Механизм координации функций многоклеточной системы усложняется. На этом этапе развития регуляции каждая клетка выделяет в межклеточное пространство продукты своей жизнедеятельности, сообщая информацию о себе всей системе. Это гуморальный способ управления, структурно и функционально более дифференцированный. Заметным этапом в эволюции явилось появление продолговатых форм живых объектов. Появление этого признака было прогрессом эволюции, т. к. продолговатая форма сокращает фронт опасности для животного. Но и порождает массу проблем в управлении, т. к. части тела, находящиеся кзади от главного - головного - конца, должны быть защищены и послушны, должны быть готовы к выполнению более сложной двигательной задачи, т. е. более высоко координированы в своих действиях. Для выполнения двигательных задач этого плана эволюция порождает дистанционный способ восприятия объекта - появляется рецепторный аппарат (от лат. receptor - принимающий, receptio - принятие). В биологии рецепторы - окончания чувствительных нервных волокон или специализированные клетки - сетчатки глаза, внутреннего уха и т. д., преобразующие раздражение, воспринимаемое извне (экстероцепторы) или из внутренней среды организма (интероцепторы), в нервное возбуждение, передаваемое в центральную нервную систему. Телерецепторы (от греч. Ше - вдаль, далеко) - рецепторы, принимающие сигналы на расстоянии, - это механизм зрения, слуха и т. д. Появление телерецепторов рассматривается как скачок, революция в развитии движений, т. к. это уже способность заранее увидеть добычу или опасность, подготовиться к выполнению соответствующей двигательной задачи - обеспечить себе безопасность или овладеть жертвой. Задача усложняется, и вместе с этим усложняются управляющий и исполнительный аппараты - появляется средоточие центров управления - головной мозг, совершенствуется опорно-двигательный аппарат. Н.А.Бернштейн пишет, что загадкой эволюции явилось появление в филогенезе поперечно-полосатой мышцы. Это приобретение природы имело свои как положительные, так и отрицательные (в смысле управления) последствия. Положительным было увеличение силовых возможностей, облегчение решения сложных двигательных задач, скорости ответных реакций, устойчивости позы, выносливости при длительной работе.
Стало возможным не только туловищное передвижение, но и передвижение с помощью конечностей - ходьба, полет, плавание и т. д. Отрицательным, если можно так сказать, была необходимость усложнения систем управления и исполнительного аппарата движений - мышечной и костной систем. Структура мышцы кардинально изменяется. Мышца потому и называется поперечно-полосатой, что состоит из чередующихся, отличных друг от друга, структурных элементов, видимых микроскопически как красные и белые поперечные полоски.
Структура обусловлена функцией. Мышца с точки зрения управления работает по принципу “все или ничего”. В этих условиях дозирование усилия, адекватное решаемой двигательной задаче (фактически координация), затруднительно, и природа наделяет мышцу волокнистым строением, способностью включать в работу не все волокна, а необходимое в данный момент их количество, и “амортизаторами”, какими являются соединительно-тканные прослойки (белые полоски между красными), которые обеспечивают плавность движения. Для функции такой мышцы нужна жесткая система опоры и движений - скелет. Скелет выполняет не только двигательную, но и защитную функцию (панцирь черепахи, череп, ограждающий от повреждений нежную ткань головного мозга). Скелет должен быть жестким, но и одновременно очень подвижным, послушным, те. появляется необходимость подвижных и малоподвижных сочленений, имеющих соответствующую функции форму и определенное для каждого сустава количество степеней свободы.
Степень свободы в биомеханике - это возможность совершить движение в определенном направлении. Для блоковидной формы сустава возможны две степени свободы (например, для коленного сустава - это сгибание и разгибание).
Параллельно совершенствуются и управляющие механизмы. Все сложнее становится центральная нервная система, появляются более высокодифференцированные структуры мозга. Процесс развития мозговых управляющих структур не бессистемен, не хаотичен, а подчиняется совершенно определенным законам. В огромном, многомиллионном мире клеток мозга выстраивается в определенной последовательности и в строго определенных временных пределах своего формирования иерархия - соподчиненность низших мозговых структур высшим. Иерархия (от греч. hieros - священный, огсИё - власть) - расположение частей или элементов целого в порядке от высшего к низшему. В теории организации функций - это принцип управления.
Мы переходим к расшифровке второго положения теории Бернштейна, а именно к понятию уровней построения движений в онто- и филогенезе. Ранее кратко было описано совершенствование механизмов управляющего и исполнительного аппаратов. Из сравнения биомеханических и нейрофизиологических характеристик движений, в частности локомоций, Бернштейн заключает, что дифференцированные движения высших животных и человека есть продукт совершенствования механизмов управления более низко органиюван-

Таблица I
Фило- и онтогенез регуляции движений (по Н.А. Бернштейну)

ных систем путем создания структур, названных им уровнями построения движений.
Для расшифровки этого положения он вводит термин локализации функции. Локализация (от лат. lokus, lokalis - место, местный), по определению Бернштейна, комплекс структур мозга, ответственный за выполнение определенного класса движений. Класс движений - это движения, которые свойственны животному на определенном этапе его двигательного развития. (Далее это последнее понятие будет охарактеризовано более широко.) Он подчеркивает, что термин локализации функции не есть топика - топографическая анатомия мозга (от греч. topos - место, grapho - пишу), а функция и морфологическое содержание, вложенное в это понятие, похожи на функцию и расположение блоков панелей радиоприемника, когда отдельные части целого необязательно всегда находятся рядом, в одном и том же месте, как диктует это топографическая анатомия. Более того, созревание структур мозга, входящих в понятие локализации, может быть растянуто во времени, когда одни элементы уже готовы к выполнению функции, а другие находятся в стадии формирования. Этим, по-видимому, можно объяснить огромную сложность воспитания определенных движений, когда задержка в развитии одного из элементов локализации делает невозможным в данный момент воспитание какого-то движения - будь это игра на фортепиано, скольжение на коньках или навыки самообслуживания. Именно поэтому тренировки в спорте или обучение искусству танца и игре на музыкальных инструментах целесообразно начинать в определенном возрасте. Этим можно объяснить и сложность, огромный разброс, но и определенную закономерность патологии позы и ходьбы при ДЦП.
Различие между понятием топики и локализации иллюстрирует пример, когда при поражении определенных структур мозга больной не может выполнить задание “подними руку”, но на просьбу снять шапку достаточно легко и свободно поднимет ту же руку.
Исходя из всего вышесказанного, Бернштейн предлагает схему построения движений или уровней координации в фило- и онтогенезе.
Каждый уровень координации включает в себя афферентную систему, центр и эфферентную систему. (Афферент - от лат. afferens - приносящий, эфферент - от лат. efferens - выносящий.) В биологии, соответственно, - переносящий нервный импульс к центру или от центра к рабочему органу.
Мы собрали в таблицу сведения Бернштейна о схеме построения движения или координации (табл. I).
В схеме для каждого уровня координации обозначен морфологический субстрат центральной нервной системы, возраст окончательного его формирования, афферентная система, класс движений, организуемый этим уровнем координации, и специфические элементы позы и локомоции человека, вносимые в управление именно этим уровнем.

Уровни координации прелокомоторного периода: руброспиналь- ныц, таламо-паллидарный. стриатно-пирамидный, состоящий из двух подуровней - стриатного и пирамидного.
Далее следуют уровни регуляции движений, когда локомоция уже сформирована: теменно-премоторный (уровень предметных действий и смысловых целей) и группа высших кортикальных уровней, обеспечивающих письмо, речь и т. д., освещение которых не входит в задачу этой книги.
Руброспинальный уровень - самый древний - палеокинетиче- ский (от греч. palaios - древний, kinesis - движение) - уровень координации движений.
Название его включает латинское определение красного ядра головного мозга (nucleus - ядро, rubrum - красный) и ядер спинного мозга (от лат. spina - хребет, в анатомии - спинальный - спинномозговой).
Морфологическим субстратом его являются афференты вестибулярного аппарата, рецепторы кожи, сухожилий, мышц и суставных сумок, рецепторы перекрестных рефлексов парных конечностей и межконечностные (от лат. reflekxus - повернутый назад, отраженный, в биологии - реакция организма на раздражение рецепторов), рефлексов внутренних органов: сосудодвигательный, мочеиспускательный, дефекационный.
Он заканчивает свое развитие внутриутробно. Класс движений, обеспечиваемый этим уровнем координации, состоит из движений плавательного характера - медленные или стремительные, непрерывные или внезапно переходящие в неподвижность, движения, в которых участвует почти 100% мускулатуры тела. Их характер напоминает движения рыб.
Таламо-паллидарный уровень - это еще один механизм регуляции движений, готовый к функционированию еще до рождения. Название его обусловлено латинскими терминами: talamus - зрительный бугор, в анатомии - основная часть промежуточного мозга, главный подкорковый центр, направляющий импульсы всех видов чувствительности - температурной, болевой и т. д. - к стволу мозга, подкорковым узлам и коре больших полушарий. Pallidum (от лат. globus pallidum - бледный шар) у человека регулирует вегетативные функции. Этот уровень обеспечивает основную громадную синергию ходьбы с ритмической последовательностью включения почти 100% скелетной мускулатуры. (Синергия - от греч. sinergBs - вместе действующий. В биологии синергисты - мышцы, действующие совместно для осуществления одного определенного движения, например вдоха, в котором участвуют одновременно межреберные, межхрящевые и диафрагмальные мышцы.)
Таламо-паллидарный уровень в совокупности с руброспиналь- ным обеспечивают механизм равновесия - антигравитационный - и определенный характер движений плода в околоплодной жидкости полости матки.
Здесь следует заметить, что в работах по антропологии (от греч. antropos - человек, logos - слово, учение) есть сведения о том, что возрастная динамика трабекулярной структуры позвонков говорит о позвоночнике плода как о функционирующем органе.
Любопытным с этих позиций является открытие американских ученых, которые доказали, что плод 8 - 12 недель уже слышит. Этот интересный факт бы установлен следующим образом: отец ребенка, прижав голову к животу матери, напевал одну и ту же мелодию. После рождения малыш всегда четко реагировал на эту мелодию, затихал и прекращал плач.
Клиницисты хорошо знают, что брыкательные движения плода возникают в совершенно определенные сроки его развития настолько четко, что время шевеления является одним из критериев определения срока беременности.
Можно предположить, что у ребенка с осложненным рождением, у которого будет диагностирован детский церебральный паралич, дефектен уже самый древний механизм координации движений. В этом случае станут понятными очень многие особенности протекания беременности и родов, такие, как позднее шевеление плода, неправильное его положение (поперечное и т. п.) в полости матки, неправильное вставление головки при прохождении через родовые пути, обвитие пуповиной, один конец которой неподвижно прикреплен к стенке полости матки (так, к примеру, может погибнуть привязанный к будке маленький щенок, обвившийся цепью), быстрые или, напротив, медленные роды, преждевременные или поздние роды. Все указанные признаки достаточно часто отмечаются в анамнезе детей с ДЦП. На эту мысль наводит и то обстоятельство, что двигательные нарушения при ДЦП при всем своем многообразии классифицируются на определенные группы, в которых рисунок движений однотипен. Да и трудно предположить, что акушеры России, США, Индии и т. д. одинаково небрежны при родовспоможении.
С этих позиций родовые травмы - периферические параличи рук, переломы ключиц, гематомы и другие осложнения можно было бы рассматривать не как причину, а как следствие - следствие нарушенной программы движений плода. Исходя из этого, следовало бы, наверное, изучать с помощью ультразвукового или других методов исследования закономерности движений плода, их рисунок, и при обнаружении признаков риска предлагать кесарево сечение вместо стимуляции родовой деятельности матки, которая в данной ситуации только усилит гипоксию плода.
Афферентной системой этого уровня регуляции остаются рецепторы вестибулярного аппарата, которые призваны сигнализировать о положении частей тела в пространстве (отолитовый аппарат) и скорости и направлении движений (полукружные каналы внутреннего уха). Лабиринтная система, красное ядро, зрительный бугор, а также ядра мозжечка в норме к моменту рождения сформированы и могут полноценно функционировать.
Есть основания допустить, что осложнения периода беременности и родов могут исходить из дефектности структурных элементов руб- роспинального и таламо-паллидарного уровней построения движений, выраженной в разной степени тяжести и обусловливающей дальнейший патогенез деформаций позы и ходьбы ребенка с ДЦП после его рождения. Ребенок рождается “таламо-паллидарным”, и движения новорожденного продиктованы этим созревшим уровнем координации. На класс движений, регулируемых руброспинальным уровнем координации, наслаиваются движения класса таламо- паллидарного уровня. При этом природа не утрачивает своих ранних механизмов координации, а каждый следующий, более высоко дифференцированный уровень изменяет характеристики движения в направлении их усложнения, совершенствования в соответствии с более сложной двигательной задачей, используя при этом целесообразные элементы более примитивного класса движений.
Так, плавные, чередующиеся с неподвижностью, непрерывные движения руброспинального уровня (сходные с атетоидным гиперкинезом) переходят в область вегетативных функций, таких, как перистальтика кишечника, сокращения сосудистой стенки, работа сфинктеров мочевого пузыря и заднего прохода. Шагательная синергия таламо-паллидарного уровня координации, включающая почти всю скелетную мускулатуру, служит фундаментом организации двуногой ходьбы, вместо многоногого и туловищного передвижения низших животных (табл. I). В эволюции высших животных и человека природа использует и такие примитивные способы управления, которые свойственны одноклеточным организмам. Примером может служить передвижение кровяных телец в сосудистом русле. Исследования доказали, что это процесс не пассивного перемещения клеток в потоке плазмы крови, а активные, регулируемые движения кровяных клеток.
К классу движений таламо-паллидарного уровня относится, как следует из схемы, глобальная сгибательная синергия. Клинически это выглядит следующим образом: если попросить больного согнуть одну ногу в колене, всегда одновременно происходит автоматическое сгибание в тазобедренных, коленных и голеностопных суставах обеих ног (рис. 1 А, Б). Изолированное движение невозможно. Поставленный на колени пациент падает вперед или вообще не может принять вертикальную позу на коленях, складываясь при этом как перочинный нож, но тем не менее может сохранить вертикальное положение туловища в положении сидя с согнутыми ногами.
При тяжелой степени дефектности этого уровня человек не может самостоятельно сесть, посаженный, не удерживает позу сидя.
Прослеживая эволюцию движений ребенка, можно наблюдать, что до определенного возраста здоровый ребенок тоже не может выполнить эту задачу, но затем вместе с созреванием структур и следующего за ним по иерархической лестнице стриатного уровня двигательные синергии как бы локализуются, ограничиваются в объеме функционирующих мышц и суставов, и, таким образом, становятся возможными более дифференцированные и целесообразные позы и движения. Такая дифференцировка возможна с созреванием, как сказано выше, стриатного уровня координации, когда шагательная синергия начинает соотноситься с особенностями пространства - препятствиями, неровностями почвы, ступеньками и т. д. Стриатум - от лат. korpus striatum - полосатое тело. В анатомии - высокодиффе-

А. Больная с глобальной сгибательной синергией. Попытка произвести сгибание в правом коленном суставе сопровождается синергическим сгибанием в тазобедренном и коленном суставах, тыльным сгибанием в тазобедренном и коленном суставах, тыльным сгибанием стоп и увеличением глубины поясничного лордоза. Изолированное движение невозможно. Б. ЭМГ мышц- сгибателей левой ноги. Попытка произвести сгибание в правом (контрлатеральном) коленном суставе сопровождается высокой электрической активностью мышц-сгибателей левой ноги.

ренцированное образование головного мозга, играющее роль регулятора и тормоза грубой рефлекторной деятельности паллидума. Известно, что ребенок, только начинающий ходить, еще “не знает высоты”, не переступает через препятствия и т. д.
Глобальные, крупномасштабные двигательные синергии сменяются более локализованными. Этот процесс в норме заканчивается к 2 годам. Признаком локализации такого рода двигательной синергии является так называемая тибиальная синкинезия Штрюмпеля, описанная им в 20-х годах. Он расценивал ее как неврологический симптом, служащий дифференциальным признаком поражения пирамидного пути. Пирамидный уровень регуляции движений, по Бернштейну, является следующим за стриатным, т. е. данные Штрюмпеля косвенно подтверждают правомерность классификации уровней построения движений.
Тибиальная синкинезия Штрюмпеля клинически трактуется как автоматическое тыльное сгибание и супинация стопы с одновременным подошвенным сгибанием первого пальца этой стопы. Анализ электромиографической и биомеханической структуры ходьбы позволяет утверждать, что указанная синкинезия (от греч. sun - вместе, kinema, kinematos - движение) является элементом локомоции здорового человека и.служит для переноса стопы над опорой. Она становится отчетливо заметной только в экстремальных ситуациях: при высоком темпе ходьбы, при преодолении внезапных препятствий.
При неполноценном контроле пирамидного уровня координаций тибиальная синкинезия, не будучи ограниченной по амплитуде указанных ранее движений и времени их проявления в пределах целесообразного, становится патологической и обусловливает такие особенности позы и ходьбы при ДЦП, как нестабильность голеностопного. сустава в сагиттальной плоскости, значительное ослабление заднего толчка при ходьбе, позу так называемого тройного сгибания при стоянии.
Пирамидный уровень завершает прелокомоторный период развития координаций. Этот уровень вносит в движение его смысловое значение (пойти туда, принести то-то и т. д.). Признаком формирования этого уровня в локомоции служит возможность произвести изолированное движение.
При недостаточности пирамидного уровня координации, как указано выше, затруднено или вовсе невозможно, например, тыльное сгибание стопы. На просьбу сделать только это движение изолированное сгибание ее происходит в минимальном объеме, а при команде “согни колено” стопа автоматически сгибается иногда до прикосновения тыла стопы к поверхности голени. Аналогичная ситуация наблюдается и при электромиографическом исследовании, когда максимум амплитуды ЭМГ при автоматическом сгибании стопы при наличии тибиальной синкинезии вдвое выше максимума амплитуды ЭМГ при попытке произвести изолированное тыльное сгибание стопы (рис. 2 А, Б, В).
Пирамидный уровень координации созревает к двум годам, и с окончанием его созревания локомоция формируется в полном объе-

Рис. 2 (А,Б,В)- Больной с тибиальной синкинезией Штрюмпеля.
А. Произвольное изолированное тыльное сгибание левой стопы минимально (в пределах 10°). Б. Попытка согнуть колено левой ноги сопровождается автоматическим тыльным сгибанием стопы этой ноги. В. ЭМГ передней большеберцовой мышцы при попытке произвести максимальное тыльное сгибание стопы этой ноги (верхняя кривая). ЭМГ передней большеберцовой - мышцы значительно увеличена по амплитуде при попытке согнуть колено этой же ноги (нижняя кривая).

ме. Следовательно, схема построения движений дает нам представление о процессе поэтапной организации локомоции и для каждого уровня можно определить дифференциальный признак. Так, для та- ламо-паллидарного уровня - это глобальная сгибательная синергия, для стриатного уровня - тибиальная синкинезия Штрюмпеля, для пирамидного - произвольное изолированное тыльное сгибание стопы. Даже после того как эти уровни окончательно сформированы, локомоция не застывает в своем развитии, элементы ее претерпевают изменения, вызванные гормональными возмущениями периода юности или ветхостью, изношенностью механизмов координации в старости, а также повреждениями, вносимыми в мозг травмой или болезнью. В этом смысле патология позы и ходьбы при ДЦП может быть трактована как результат процесса развития изначально дефектных структур мозга, отвечающих за координацию на каждом этапе онтогенеза локомоции.
Следующий постулат Бернштейна - принцип рефлекторного кольца, или иначе - обратной связи, или так называемых сенсорных коррекций (сенсорный - от лат. sensus - восприятие, чувство, ощущение). Эти формулировки определяют одно и то же понятие.
Бернштейн впервые вводит в нейрофизиологию понятие рефлекторного кольца как формы обратной связи, вступив в драматическую для себя дискуссию с великим Павловым, строившим свою теорию организации и совершенствования функции на понятии рефлекторной дуги, исключая таким образом обратную связь.
Движение представляет собой, по Бернштейну, два цикла взаимодействий: периферического и центрального (рйс. 3).
Периферический двигательный аппарат осуществляет свою деятельность путем сложного взаимодействия с внешней средой. Мера мышечного напряжения зависит как от иннервационного состояния мышцы, так и от значения сочленовного угла, т.ё. от мгновенного положения, занимаемого системой звеньев. Отсюда следует, что мышечное напряжение есть одна из причин движения, т. к. оно есть сила, которая приложена к звену и вынуждает его изменить свое положение. С другой стороны, движение звеньев, сопровождающееся изменением сочленовных углов, изменяет расстояние между точками прикрепления мышц и тем самым является причиной изменения ее напряжения. Здесь имеется характерная для физиологии цйклическая форма взаимодействия: мышечные напряжения влияют на протекание движения, а движения влияют на мышечное напряжение. Такие циклические взаимодействия хорошо известны в механике и имеют выражение на математическом языке. Над периферической системой циклических взаимодействий надстроена другая, деятельность которой также циклична.
Это ЦНС со всеми ее многочисленными аппаратами. Здесь имеют taecTO взаимодействия другого порядка. Прежде всего первичный эффекторный импульс из командного прибора, направленный из ЦНС через клетки передних рогов в мышечную систему, приводит последнюю в движение или изменяет состояние ее движения. Это движение или изменение движения воспринимаются нервными окон-

чаниями сухожилий, мышц и суставных сумок, которые относятся к проприоцептивным нервным аппаратам. Они через аффекторные пути передают информацию об изменениях движения. Учитывая эту импульсацию, а также зрительную, слуховую, ЦНС посылает новый импульс, внося коррективы в первоначальный двигательный импульс, т. е. имеет место циклический характер взаимодействий, что говорит о рефлекторном кольце, о наличии обратной связи или о сенсорной коррекции.
Пассивный двигательный аппарат состоит из подвижных костных звеньев, образующих кинематические цепи, которые характеризуются степенями свободы подвижности.
Переход от одной степени свободы к двум или нескольким знаменует собой возникновение необходимости выбора. Становится необходимым автоматический непрерывный целесообразный выбор.
Кинематическая цепь станет управляемой только в том случае, если в состоянии назначить определенные, желательные для нас траектории движения для каждого из элементов цепи и заставить эти элементы двигаться по назначенному пути.
“В преодолении избыточных степеней свободы движущегося органа, т. е. в превращении последнего в управляемую систему, и заключается задача координации движений”. Принцип координации Бернштейн называет принципом сенсорных коррекций.
Сказанное вполне объясняет, почему расстройства в эффектор- ных аппаратах ЦНС, как правило, не влекут за собой чистых нарушений координации, давая только синдромы параличей, парезов, контрактур и т. п., и почему обязательно неполадки в афферентных системах вызывают нарушения движений атактического типа, т. е. расстройства координации.
Все известные в клинике формы органических расстройств координации всегда связаны с заболеваниями рецепторных аппаратов и их проводящих путей: вестибулярных аппаратов (лабиринтная или вестибулярная атаксия), задних столбов спинного мозга, проводящих проприоцептивную и тактильную импульсации (табетическая атаксия), реципрокных систем мозжечка (церебеллярная атаксия).
У человека возможны компенсации, способные преодолеть в той или иной мере органическую атаксию. Они всегда осуществляются путем включения в двигательный процесс нового вида чувствительности (зрительной, слуховой и др.).
Все виды афферентаций организма принимают в разных случаях и в разной степени участие в осуществлении сенсорных коррекций.
Используя терминологию Sherrington, Бернштейн называет всю совокупность рецепторных отправлений этого рода “проприоцеп- тикон” в широком функциональном смысле.
Это система сенсорных сигналов о позах, сочленовных углах, скоростях, мышечных растяжениях и напряжениях. Мышца, вызывая своей деятельностью изменения в движении кинематической цепи, раздражает чувствительные окончания проприоцепторов, а эти сигналы, замыкаясь в ЦНС на эффекторные пути, вносят изменения в эффекторный поток (т.е. имеется кольцо рефлекса). Координация в зтом понимании - не какая-нибудь точность или тонкость эффекторных импульсов, а особая группа физиологических механизмов, создающих непрерывное организованное циклическое взаимодействие между аффекторным и эффекторным процессом.
Так как каждое движение, имеющее реальный смысл, преодолевает на своем пути внутренние и внешние силы, вся суть его заключается в целесообразной борьбе с ними.
Двигательная задача и те силы, которые надо преодолеть для ее решения, диктуются внешним миром и неподвластны индивидууму.
Для того чтобы правильно решить двигательную задачу, необходимо в течение всего двигательного акта, от начала и до конца выверять его с помощью органов чувств, следить и контролировать каждое мгновение: так ли, как нужно, идет решение задачи, и каждое мгновение вносить необходимые поправки. Механизм этих поправок к движению и является сенсорной коррекцией. Дефект тех или иных нужнейших для движения видов чувствительности и обеспечиваемых ими сенсорных коррекций ведет к тяжелым нарушениям двигательной координации.
Движение не может совершаться по одним лишь внутренним законам баланса возбуждений и торможений, потому что с первого же мгновения его нарушат и внешние силы, неизвестные организму наперед и неподвластные ему, и силы взаимных столкновений и отдачи в длинных и подвижных цепях конечностей, и сопротивление внешней среды.
Роль и деятельность чувствительных афферентных систем организма только и начинается с момента подачи ими пускового сигнала очередного движения. Как только оно началось, в ответ на эффек- торные первые импульсы во всех чувствительных приборах двигательного аппарата (в органах мышечно-суставной чувствительности в первую очередь) возникают афферентные импульсы, сигнализирующие о том, как началось движение и как оно протекало. Эти проверочные чувственные сигналы определяют в мозге необходимые очередные сенсорные коррекции.
Исходя из этого, фундаментальной формой нервного процесса при осуществлении смыслового двигательного акта является, по Бернштейну, форма рефлекторного кольца.
При выполнении двигательной задачи чувствительные системы обеспечивают две различные функции: сигнально-пусковую службу и службу, контролирующую эффект движения и обеспечивающую его управляемость.
Изучение управления целостными смысловыми двигательными актами представило афферентные системы организма в совершенно другом свете. Анализ координационного построения двигательного акта и его нарушений в патологии, изучение того, как ведется управление движениями в порядке кругового процесса типа “рефлекторного кольца” показали, что афферентные системы сигнализируют мозгу о ходе движения и обеспечивают основу для сенсорных коррекций не “сырыми чувственными сигналами, обособленными друг от друга по признаку качества (отдельно осязательными, кинестетическими, зрительными и т. д.), а наоборот. Эти восприятия, обеспечивающие управление движением, всегда имеют характер целых сложных синтезов, глубоко проработанных мозгом комплексов разнообразнейших ощущений, скрепленных еще и многочисленными следами от прежних ощущений, сохраненных памятью, впечатлений от прежних перемещений в пространстве. “Чем сложнее двигательная задача, тем сложнее и дальше от первичных сырых ощущений тот сенсорный (чувственный) синтез, который обслуживает данный уровень, тем больше в нем внутренней мозговой переработки, осмысления, упорядочения и даже схематизации первичных ощущений, которые в нем обобщаются”.
Все последовательное эволюционное усложнение и обогащение сенсорных синтезов шло по линии устранения искажений и неточностей отдельных органов чувств, обеспечения сверки их показаний, осмысления.
Все последовательно формировавшиеся уровни построения движений (так их обозначает и современная физиология двигательных актов) имеют самый различный эволюционный возраст, сохранились и у человека, образовав у него целую иерархическую лестницу взаимного подчинения, причем самый верхний из них принадлежит монопольно человеку (уровень речи и письма). Древнейшие низовые уровни, сформированные у животных со своими мозговыми субстратами и списками посильных им двигательных задач, сохранились и у человека и продолжают управлять древнейшими, примитивными в смысловом отношении двигательными актами (глотание, плавание, ходьба и т. д.).
“В начале формирования нового индивидуального двигательного навыка почти все коррекции суррогатно ведутся ведущим уровнем - инициатором, но вскоре положение изменяется, каждая из технических сторон и деталей выполняемого сложного движения рано или поздно находит для себя среди нижележащих уровней такой, афферентации которого наиболее адекватны этой детали по качествам обеспечиваемых им сенсорных коррекций. Постепенно, в результате ряда последовательных переключений и скачков, образуется сложная многоуровневая постройка, возглавляемая ведущим уровнем, адекватным смысловой структуре двигательного акта и реализующим только самые основные решающие в смысловом отношении коррекции. “Под его дирижированием в выполнении движений участвуют, далее, ряд фоновых уровней, которые обслуживают фоновые или технические компоненты движения, тонус, иннервацию и денервацию, реципрокное торможение, сложные синергии и т. п.” (Н.А.Бернштейн).
Процесс переключения технических компонентов управления движением в низовые, фоновые, уровни есть то, что называется обычно автоматизацией движения.
Во всяком движении, какова бы ни была его уровневая высота, осознается один только ведущий уровень.
Сущность процесса автоматизации, требующего иногда длительного времени и настойчивого упражнения, состоит именно в выработке ЦНС плана описанной выше разверстки фонов, в определении двигательного состава движения.
Определение двигательного состава неврологи называют иногда “составлением проекта движения”.
Первоначально для удержания стойкой длины шага ребенок использует проприоцептивные механизмы и вносит коррекцию “post factum”, затем вступает более совершенный прием коррекции “ante factum" (от лат. post и ante - соответственно после и перед фактом).
Явление предварительных коррекций служит во всех случаях более поздней и более совершенной формой координации по сравнению с механизмом вторичных коррекций.
В начале освоения движения новичок напрягает все мышцы- антагонисты, заранее и с запасом выводит из строя все степени свободы, оставляя одну-две самые необходимые для данной базы движения.
На следующей ступени упражнения, уже освоившись с ним, когда и в каком направлении постигнет его очередной толчок реактивной силы, субъект позволяет себе постепенно, одну за другой высвобождать фиксированные до того степени свободы, чтобы предотвращать реактивные силы, что дает резкую энергетическую экономию, т. е. борется с реактивными силами. В третьей ступени развития движения борьба с реактивными силами носит другой характер, когда они из помех превращаются в полезные силы.
Сенсорные коррекции являются стимулом как в процессе становления движений, так и в процессе их дальнейшего совершенствования в возрастном аспекте. Причем процесс организации движения внутри своего класса Бернштейн определяет как эволюционный, а переход к новому классу движений, обусловленный появлением более дифференцированного уровня координации как революционный, скачкообразный. Движения более высокого уровня регуляции появляются внутри класса более низко организованного, достигают максимума развития и вытесняются нерациональные с точки зрения новой двигательной задачи признаки прежних движений.
К примеру, двигательные автоматизмы глобальной сгибательной синергии постепенно сменяются более локализованными автоматизмами тибиальной синкинезии. При этом изменяются биомеханические и электрофизиологические характеристики ходьбы, позволяющие выполнять более сложные двигательные задачи, такие, как дифференцировка фаз опорного периода шага, способность преодолевать неровности почвы, более высокий темп ходьбы и т. д.
В конечном итоге именно сенсорные коррекции решают эти проблемы. Ведь исполнительный мышечный аппарат, вся работа мышц управляется импульсами, идущими от клеток передних рогов спинного мозга, по принципу: импульс - сокращение мышцы. Все координационные “разборки” (с какой силой сократиться мышце, когда, как долго и т. д.) происходят на супраспинальных уровнях - на уровнях координации, обозначенных Бернштейном, т. е. до клеток передних рогов спинного мозга. Таким образом, “конечный путь” по неврологической терминологии, один при всем многообразии и сложности надсегментарного аппарата ЦНС.
Поза, характеристики ходьбы, следовательно, формируются на надсегментарных уровнях, и инструментом этого процесса являются сенсорные коррекции.
Этот принцип очень важен в том смысле, что при ДЦП, т. е. при центральном параличе, неправомерно, по-видимому, говорить о потере мышечной силы, как о причине ограничения объема движений в суставе (это свойственно только параличам периферическим, где прерван или поврежден конечный - эфферентный - путь), а следует говорить о нарушении координации движений - дискоординации, дискинезии (от греч. dys... и лат. dis... - приставка, означающая затруднение, нарушение, утрату чего-то). С этих позиций логично рассматривать и сущность способов ортопедической коррекции позы и ходьбы при ДЦП.
Все средства, применяемые ортопедией, имеют своей целью в итоге повлиять на характер сенсорных коррекций, будь это уменьшение потока сенсорной импульсации при фиксации сустава лонгетой или ортопедическим аппаратом или применение холода для усиления потока импульсации. Последнее достигается, например, методом Мишеля ля Матье, когда при сгибательной контрактуре лучезапястного сустава и суставов пальцев дальнейшее довольно сильное и продолжительное сгибание, производимое врачом и усиливающее афферентный поток, вызывает увеличение объема разгибательных движений. Ту же роль выполняет и так называемый лечебно-нагрузочный костюм - костюм космонавтов, предложенный к применению при ДЦП. С помощью продольных эластичных тяг, идущих от надплечий к поясу и от пояса к стопам, усиливается сенсорная импульсация в координационные структуры мозга, ответственные за регуляцию антигравитационных функций. И действительно, при применении костюма мы наблюдали значительное повышение устойчивости позы и ходьбы детей с ДЦП. Хотя следует заметить, что в данном случае нельзя исключить и нецелесообразные биомеханические компенсации для повышения устойчивости позы, такие, как изменение глубины кривизн позвоночника, усиление имитационных синкинезий и т. д.
Хирургическое вмешательство также значительно влияет на поток сенсорной импульсации: мио- и тенотомии (от греч. mfs - мышца, tome - отрезок, tendo - от лат. - сухожилие; в медицине - рассечение мышц и сухожилий), артродезы (от греч. arthron - сустав, de - от лат. и des - от франц. - отсутствие) исключают движения в суставах и практически прекращают поток проприоцептивных импульсов. Это объясняет спазмолитический эффект операций при ДЦП, распространяющийся далеко за пределы области вмешательства. Иногда одно рассечение прямых мышц бедра при rectus- синдроме нормализует всю позу.
Пересадка мышц также меняет афферентный поток, внедряясь таким образом в механизм сенсорных коррекций. Это положение заставляет строже подходить к показаниям к хирургическим операциям в возрастном аспекте. Глобальная синергия, например, делает эффект любой операции труднопрогнозируемым, также, как сочетание экви- нуса с тибиальной синкинезией.
Наиболее благоприятным бывает результат у больных ДЦП с недостаточностью пирамидного уровня регуляции, т. е. когда прелоко- моторный период в основном закончил свое формирование и практически не прогнозируем результат “таламо-паллидарных больных” ДЦП, т. к. период формирования локомоции только начал свое развитие.
Об этих и других осложнениях будет сообщено подробнее в главе о принципах хирургической коррекции позы и ходьбы при ДЦП.
Сенсорные коррекции являются основой не только организации движений в онтогенезе, но и механизмом их совершенствования, о чем свидетельствует теория воспитания навыка в спорте, труде, а также организация локомоций. Н.А.Бернштейн в своей теории освещает основные структурные слагающие локомоторного акта: чередование опорного и переносного периодов, период двойной опоры.
По принципу равенства действия и противодействия усилия ног равны и противоположны усилиям опорных реакций, т. е. силовым воздействиям опорной поверхности на тело идущего. Это вертикальная составляющая шага (см. гл. IV).
Наиболее информативна продольная составляющая.
Силовые импульсы, обусловливающие движения ноги при ходьбе, отнюдь не ограничиваются одной парой простых реципрокных импульсов на каждый двойной шаг.
При изучении развития бега у детей обнаружено, что в норме у детей от 2 до 5 лет начинается организация переносного периода и наибольшие новшества появляются в проксимальных точках ноги, тогда как дистальные еще долго остаются стабильными.
От 2 до 5 лет продольные кривые бедра обнаруживают беговую перестройку переносного времени уже в полном объеме, тогда как кривые стопы еще не отдифференцировались от ходьбы даже в опорном периоде.
Этот преобладающий ход эволюции сверху вниз от проксимальных точек к дистальным приводит Н.А.Бернштейна к следующему физиологическому обобщению. (Т.к. эти сведения чрезвычайно важны для ортопеда, особенно хирурга, занимающегося коррекцией позы и ходьбы при ДЦП, представляется целесообразным привести весь текст автора.) “Крайне маловероятно, чтобы нервная динамика дистальной мускулатуры отставала так резко (на целые годы) от динамики проксимальных мышц. Значительно вероятнее другое. Проксимальные точки ноги (например, тазобедренный сустав) окружены значительно более мощным массивом мышц, нежели дистальные (стопа), и в то же время моменты инерции ближайших к первым частей звена несомненно меньше, чем моменты инерции дистальных звеньев. Поэтому мышцам тазобедренной группы гораздо легче сдвинуть с места верхние отрезки бедра, чем стопу, для смещения которой им приходится привести в движение всю инертную ногу сверху донизу. С этим же связано еще и то, что (относительные) скорости дистальных звеньев, как правило, выше, чем проксимальные. Следовательно, и кинетические энергии у первых больше и преодолеть их труднее. Дистальные звенья играют по отношению ко всей ноге роль, напоминающую роль тяжелого маятника”.
Отсюда следует, что нервному эффекторному импульсу при данной его силе несравненно легче проскочить в проксимальную кривую и отразиться в ней в виде заметной динамической волны, нежели суметь пробить всю толщу инерционного сопротивления дистальной системы. Для того чтобы ощутиться в последней, эффекторный импульс должен обладать значительной силой или же попасть “вовремя” - в такой момент, когда дистальная система находится в особенно выгодных условиях для его восприятия.
В чем может выражаться этот благоприятный момент, еще сказать трудно, и здесь, видимо, открывается большое поле для исследования: может быть, здесь имеет значение просто выгодная поза конечности, обеспечивающая мышцам наибольшую биомеханическую эффективность действия, может быть, этот благоприятный момент есть переломный момент скорости, когда инерционные сопротивления всего слабее ощутимы, может быть, наконец, это есть момент особо восприимчивой настройки мышечного аппарата, создаваемой здесь тем или иным стечением проприоцептивных сигналов.
Так или иначе, управление дистальными звеньями требует большей ловкости, более высокой координационной техники в смысле умения улучшить подходящий, оптимальный момент, дать как раз нужный импульс как раз в нужное время. Если это время упустить хотя бы на долю секунды, то импульс уже “не пройдет”, т. е. не даст никакого заметного эффекта на периферии.
Надо отметить, что речь здесь идет не о мелких координированных движениях дистальных отрезков вроде движений пальцев, а именно о глобальных, обширных, экстрапирамидного типа смещениях дистальных отрезков конечности. Динамика этих последних в конечном счете зависит от тех же самых тазобедренных мышц, что и динамика проксимальных точек ноги.
Но дистальная динамика становится богато расчлененной на биодинамические детали не тогда, когда эти детали появляются в эффекторном импульсе и начинают отражаться в динамике податливых проксимальных точек, а только тогда, когда устанавливается функциональная сонастроенность эффекторики и рецеп- торики и когда эффекторная н.с. научается улавливать мимолетные моменты функциональной проводимости. Динамическая расчлененность сопровождается особенно большим богатством силовых “переливов” в дистальных звеньях, свидетельствующим об очень тонком управлении динамикой внешнего, биомеханического порядка.
В сложном многозвенном маятнике, каким в биомеханическом смысле является нога, динамическое взаимодействие звеньев, игра реактивных сил, сложные колебательные цепочки и т. д. очень разнообразны и обильны. И то, что они не стушевываются у тренированного мастера, а в таком изобилии находят свое отражение в динамических кривых, говорит об очень тонкой реактивной приспособляемости нервно-двигательного аппарата к проприоцептивной сигнализации.
Более высокая степень расчлененности дистальных силовых кривых есть признак умения ловить моменты наименьшего сопротивления, иначе говоря, наиболее полно утилизировать и всю внешнюю богатую игру сил и, возможно, всю физиологическую (непроизвольную) гамму реципрокных и иных, более сложных реактивных процессов на мышечной периферии”.
Этот относительно сложный для клинициста материал цитирован для того, чтобы акцентировать, что хирургический экстремизм в вопросах пересадок и удлинения мышц, управляющих движениями в суставах стоп у детей с ДЦП, вряд ли правомерен до тех пор, пока стереотип ходьбы не сформируется окончательно. Следует отметить при этом, что двигательное развитие ребенка с ДЦП почти всегда отстает на 2 - 3 года^Если учесть сведения Бернштейна, ходьба и бег в норме созревают к 5 годам.
Далее автор констатирует наличие трех ступеней инволюции ходьбы в возрастном аспекте.
1. Снижение функции структурных механизмов ходьбы, но больший контроль сознания.
2. Настороженная сознательность сменяется суетливостью, мелкими шаговыми движениями.
3. Явный распад двигательных структур.
Отмечается расщепление ранее единой координации.
Таким образом, онтогенетический материал показал с несомненностью, что динамическая структура ходьбы возникает, проходит через ряд закономерных стадий развития и столь же закономерно инволюционирует в старости.
Принципиально наиболее важно здесь то, что это развитие связано с очень отчетливыми качественными сдвигами в самой структуре ходьбы.
В отношении морфологии эта структура проходит в раннем онтогенезе через:
а) стадию реципрокного иннервационного примитива;
б) стадию постепенного развития морфологических элементов;
в) стадию избыточной пролиферации этих элементов;
г) стадию обратного развития инфантильных элементов и окончательной организации целостной и соразмерной формы.
“В отношении двигательной координации биодинамическая структура ходьбы также проходит через ряд качественно различных этапов развития: в самом начале отмечается симптом гипофункции проприоцептивной координации вообще, затем следует стадия выработки проприоцептивной координации post factum (компенсаторной или вторичной координации).
Гораздо реже развивается координация ante factum (дозировочная или первичная координация), организующаяся значительно позднее”.
Итак, теория Бернштейна о построении движений дает представление о нейрофизиологической и биомеханической структуре движения в процессе его становления и совершенствования. Она включает основополагающие положения:
1. Онтогенез движений человека повторяет филогенез, что позволяет говорить об универсальности схемы построения движений, предложенной автором, и, следовательно, правомерности применения этих законов к различным нарушениям в двигательной сфере человека, в том числе и к ДЦП.
2. Уровень координации морфологически строго обозначен и включает в себя определенные структуры головного мозга, афферентную и эфферентную рецепторные системы, способные осуществлять регуляцию специфических классов движений.
3. Качества движений не наследуются, а приобретаются. Совершенствование качеств движения есть процесс, состоящий из этапов созревания структур мозга, координирующих определенные, специфические для этого уровня классы движений. Процесс этот имеет ступенчатый характер. Совокупность комплекса мозговых структур координации и специфического для него класса движений Бернштейн называет уровнем построения движений. Для каждого класса движений нами определен признак - индикатор, специфический для этого класса движений.
Для таламо-паллидарного уровня - это глобальная сгибательная синергия, для стриатного - тибиальная синкинезия Штрюмпеля, для пирамидного - способность произвести произвольное изолированное тыльное сгибание стопы, изолированное движение пальцев рук.
4. В онтогенетическом развитии природа использует все приобретенные ранее механизмы координации от примитивных, переходящих у человека в сферу вегетатики, до БЫСШИХ социальных действий. Из каждого класса движений природа в онтогенезе использует целесообразные для выполнения двигательной задачи элементы путем торможения движений, не нужных для новой, более сложной координатор- ной задачи. Эту функцию выполняет следующий, более высокоорганизованный уровень координации.
5. Основой координации являются механизм сенсорной коррекции, два цикла взаимодействия и механизм развития навыка.
6. Сравнительный анализ качественных характеристик движений в процессе их онтогенеза в норме и клинических симптомоком- плексов расстройств позы и ходьбы при ДЦП позволяет провести отчетливые параллели. Исходя из этого, есть основание полагать, что ДЦП - не болезнь с резидуальной стадией, а результат созревания изначально дефектного мозга, проявляющий себя уже внутриутробно. Сходство движений определенного класса и симптоматики расстройств движений при ДЦП позволяет классифицировать патологию позы и ходьбы при ДЦП по дефектному уровню координации, при этом учитывается достаточная условность этой схемы.
7. Ребенок в норме рождается “таламо-паллидарным”. В течение первых двух лет он проходит еще две стадии прелокомоторного периода развития координаторных механизмов - стрйатную и пирамидную. У детей с ДЦП пирамидный уровень не достигает своей полноценной зрелости. Чем с большим опозданием и с большей дефектностью проходит у данного больного созревание структур мозга, отвечающих за координацию двигательных функций, тем сложнее прогнозировать результат лечения и тем осторожнее, по-видимому, следует подходить к назначению радикальных, в частности хирургических, методов лечения.
8.,Прелокомоторный период заканчивает свое развитие к 2 годам в норме. Это означает, что все элементы, необходимые Для удержания устойчивой вертикальной позы и ходьбы, есть в наличии. И тем не менее Бернштейн указывает, что такие составные части локомоции, как фазы опоры, элементы бега, заканчивают свое развитие к 3 годам, а все составляющие нормальной локомоции - к 5 годам. Дети с ДЦП значительно отстают в развитии двигательных навыков - на 2 и 3 года. В связи с этим следует заметить, что прогноз любого хирургического вмешательства у детей в возрасте ранее 6 - 7 лет затруднителен и не всегда результат совпадает с желаемым.

В данной схеме, по мнению Бернштейна необходимо обратить внимание на одну деталь: рецептор не всегда посылает сигналы на прибор сличения и бывают случаи, когда сигнал поступает сразу на задающий прибор. Это бывает в тех случаях, когда экономичнее перестроить движение, чем его корректировать. Это особенно важно в экстренных ситуациях.

1.3. Уровни построения движений.

Помимо рефлекторного кольца Бернштейн выдвинул идею об уровневом построении движений.В ходе своих исследований он обнаружил, что в зависимости от

того, какую информацию несут сигналы обратной связи - сообщают ли они о степени напряжения мышц, об относительном положении частей тела, о предметном результате движения и т. д., - афферентные сигналы приходят в разные чувствительные центры головного мозга и переключаются на моторные пути на разных уровнях. Под уровнем следует понимать буквально «слои» в ЦНС, Так были выделены уровни спинного и продолговатого мозга, уровень подкорковых центров, уровень коры. Каждый уровень имеет специфические, свойственные только ему моторные проявления, каждому уровню соответствует свой класс движений.

Уровень А - самый низкий и филогенетически самый древний. У человека он не имеет самостоятельного значения, но отвечает за важнейший аспект любого движения - тонус мышц. На этот уровень поступают сигналы от мышечных проприорецепторов, которые сообщают о степени напряжения мышц, а также информация от органов равновесия. Самостоятельно этот уровень регулирует весьма немногочисленные движения. В основном они связаны с вибрацией и тремором. Например, стук зубов от холода.

Уровень В - уровень синергий. На этом уровне перерабатываются сигналы в основном от мышечно-суставных рецепторов, которые сообщают о взаимном положении и движении частей тела. Этот уровень оторван от внешнего пространства, но очень хорошо «осведомлен» о том, что делается в «пространстве тела». Уровень В принимает большое участие в организации движений более высоких уровней, и там он берет на себя задачу внутренней координации сложных двигательных ансамблей. К собственным движениям этого уровня относятся потягивания, мимика и т. д.

Уровень С. Этот уровень Бернштейн назвал уровнемпространственного поля . На данный уровень поступают сигналы от зрения, слуха, осязания, т. е. вся информация о внешнем пространстве. Поэтому на данном уровне строятся движения, приспособленные к пространственным свойствам объектов - к их форме, положению, длине, весу и пр. К движениям данного уровня относятся все переместительные движения.

Уровень D - уровень предметных действий. Это уровень коры головного мозга, отвечающий за организацию действий с предметами. К этому уровню относятся все орудийные действия и манипуляции с предметами. Движения на этомуровне представлены как действия.В них не фиксирован двигательный состав, или набор движений, а задан лишь конкретный результат.

Уровень Е - наивысший уровень - уровень интеллектуальных двигательных актов. К этому уровню относятся: речевые движения, движения письма, движения символической или кодированной речи. Движения этого уровня определяются не предметным, а отвлеченным, вербальным смыслом.

Рассматривая построение уровней движения, Бернштейн делает несколько очень важных выводов. Во-первых, в организации движений участвуют, как правило, сразу несколько уровней - тот, на котором строится движение и все нижележащие уровни. Так, например, письмо - это сложное движение, в котором участвуют все пять уровней. Уровень А обеспечивает тонус мышц. Уровень В придает движениям плавную округлость и обеспечивает скоропись. Уровень С обеспечивает воспроизведение геометрической формы букв, ровное расположение строк на бумаге. УровеньD обеспечивает правильное владение ручкой. Уровень Е определяет смысловую сторону письма. Исходя из этого положения, Бернштейн делает вывод о том, что в сознании человека представлены только те компоненты движения, которые строятся на ведущем уровне, а работа нижележащих уровней, как правило, не осознается. Во-вторых, формально одно и то же движение может строиться на разных ведущих уровнях. Уровень построения движения определяется смыслом, или задачей, движения.Например, круговое движение, в зависимости от того, как и для чего оно выполняется (движение пальцев, движение тела или действие с предметом), может строиться на любом из пяти уровней. Данное положение чрезвычайно интересно для нас тем, что оно показывает решающее значение такой психологической категории, как задача, или цель, движения для организации и протекания физиологических процессов. Этот результат исследований Бернштейна может рассматриваться как крупный научный вклад в физиологию движений.

2. Формирование двигательных навыков.

2.1. Структура двигательных навыков.

Концепция Н. А Берштейна исходит из ряда фундаментальных принципов научения. Во-первых, это принципы упражняемости. Н. А.Берштейн заметил, что, в то время как технические устройства изнашиваются от многократного выполнения того или иного действия, живые организмы характеризуются улучшением каждого следующего исполнения действия по сравнению с предыдущим. Во-вторых, речь идет о принципе «повторения без повторения», заключающемся в том, что каждое новое действие-не слепое копирование предшествующего, а его развитие. По мнению Н. А. Берштейна, живое движение-это постоянно совершенствующаяся система, и поэтому его нельзя описывать в механистических терминах «стимул- реакция». В-третьих, Н. А. Берштейн говорил о том, что каждый новый навык-это двигательная задача, которую организм решает при помощи всех наличных средств с учетом внешних и внутренних обстоятельств .

Суть выработки навыка заключается в открытии принципа решения двигательной задачи. В решении двигательной задачи существует несколько этапов.

На первом этапе происходит разделение на смысловую структуру и двигательный состав действия (А что я собственно хочу сделать? Как мне удастся это сделать?). Пример: смысловой структурой может быть желание плыть, а двигательным составом-способ исполнения этого замысла(кроль или брасс).

На втором этапе происходит выявление и роспись («прощупывание») сенсорных коррекций. Одной из значительных услуг Н. А. Берштейна стало то, что он отказался от понятия «рефлекторная дуга», выработанного еще Декартом, и перешел к понятию рефлекторное кольцо . Суть этого перехода заключается в том, что навык не может быть стереотипной последовательностью выученных действий, на всем его протяжении требуется постоянная сверка движения с наличными условиями. Постоянную координирующую информацию, которую наш сенсорный аппарат получает по ходу разворачивания навыка, Н. А. Берштейн и назвал сенсорные коррекции .

Разница между определением двигательного состава и «прощупыванием» сенсорных коррекций заключается в том, что на первом этапе учащийся устанавливает, как выглядят те движения, из которых складывается навык с позиции наблюдателя. А на втором-пытается ощутить эти движения изнутри. На этом этапе необходимо максимальное количество повторений, каждое из которых будет не механическим возобновлением движения, а его модификацией. Работа с навыком осуществляется здесь на сознательном уровне. Человек старается разобраться в движении и подобрать уже готовые двигательные автоматизмы из своего личного репертуара движений. А может быть и создать новые..

Как пишет Н. А. Берштейн: «Секрет освоения движения заключается не в каких-то особых телодвижениях, а в особого рода ощущениях. Их нельзя показать, а можно только пережить».

На этом этапе формирования навыка новое звучание приобретает проблема «переноса» навыка. Феномен переноса навыка заключается в том, что овладение навыком выполнения одной задачи может улучшать результаты выполнения другой задачи.

На третьем этапе формирования происходит «разверстка фонов», т.е. автоматизация двигательного навыка . Сформированные на предшествующем этапе сенсорные коррекции покидают сознание и начинают выполняться автоматически. Постепенно все большая часть навыка становится практически независимой от сознания.

Задачей четвертого этапа является срабатывание фоновых коррекций. Все компоненты навыка интегрируются в единое целое.

Пятый этап – это этап, на котором происходит стандартизация навыка. Навык делается устойчивым, каждое новое его исполнение все более похоже на предшествующее.

И, наконец шестой этап это этап стабилизации. Навык становится устойчивым к помехам, осуществляется будто бы сам собой.

Преимущество концепции Н. А. Берштейна перед всеми описанными выше интерпретациями научения заключается в том, что здесь навык представляется иерархически организованной системой. Формирование процедурной системы памяти включает в себя и наблюдение, и инсайт, и выработку реакций. Только взятые в совокупности все «элементы» научения приводят к успешному освоению навыка.

2.2. Природа навыка и тренировки.

Все прижизненно онтогенетически приобретенные двигательные возможности обозначаются обобщенно термином двигательные навыки , процессы же их намеренной сознательной выработки объединяются в понятии двигательной тренировки . Подобные навыки приобретаются по каждому из координационных уровней, и каждый навык в отдельности часто представляет очень сложную, многоуровневую структуру.

Компенсаторная система (восстановление, улучшение движений).

При ампутации (после) ног – общие психозы (острые), бред, суицидальные мысли. Утрату рук человек не переживает в столь явной форме – роль передвижения!!!

кольцевая функция организации движений

сравнивающее устройство (блок сличения):

· продолжение движения

· изменение цели (т.к. не соответствует)

· изменение программы

· эффектор вносит поправки (звено обратной афферентации).

Благодаря компоратору движение имеет множество степеней свободы (не только обеспечивает точность, но и может полностью изменить «дизайн движений»). производные движения (двигательный запас человека) прижизненно формируется + осознание. особенно доступны осознанию начало и конец движения.

Движения, по Бернштейну, имеют вертикальную организацию. Движения всегда представлены на всех уровнях вертикальной конструкции мозга (в НС) – позволяет понять активирующую функцию движения. Начинаем дигаться – начинает работать вся иерархическая система (активируется мозг). Движение – ЖИЗНЬ!

Бернштейн:

выделил различные уровни в вертикальной организации дижений

каждый уровень характеризуется определенными метафорами, мозг струтктурами

какой именно набор движений характерен для каждого уровня

тип афферентации + какие зоны мозга включены в афферентацию на каждом уровне

настоящие расстройства произвольных движений (апраксии) возникают только на уровнях D и E (при их поражении).

правое и левое полушарие в обеспечении движений играют разные роли. Ведущая роль в праксисе – лев. полушарие (именно при его поражнеии – расстройства произвольных движений не только в контрлатеральной (прав. – противоположн.), но и во второй (ипсилатеральной) руке.

При поражении правого полушария могут возникающего расстройства движений в левой руке (контрлатеральной) (ассиметричные эффекты).

В систему движения включены пирамидная и экстрапирамидная система (функциональные органы).

РАЗДЕЛЕНИЕ:

Филогенез: пирамидная система появляется у более сложных организмов (у рыб нет, у млекопитающих уже нет).

Пирамидная система – часть коры. Экстрапирамидная система – подкорковые ядра (включение коры в конструкцию этих систем).

Насыщенность:

пирамидная более сложная (множество функциональных элементов, функции которых пока не известны). по структурной организации достаточно монотонна + сюда включаются пре- и постцентральные отделы коры.

в экстрапирамидной системе элементы очень сильно взаимосвязаны + взаимозаменяемы (очень много гибких звеньев (участвуют при решении одной задачи, не участвуют при решении другой).

пирамидная – подавление активности; обеспечивает активацию физическую (имеющая временные и пространственные характеристики, более развернутая).



экстрапирамидная – активирующая функция, тоническая актуализация (более кратковременная).

пирамидной системы – тонус мышц снижается, возникают парезы (частичные нарушения движений, неполные движения) + возникают параличи.

экстрапирамидной системы – различные расстройства движений, включающие гиперинезы, спастические нарушения, м.б. параличи с повышенным тонусом.

Вектор функциональной активности:

Поражение

Эти системы работают в комплементарном взаимодействии, они дополняют друг друга.

Пирамидная система обеспечивает :

точность движений

дискретность

пространственно-временную организацию

Экстрапирамидная система:

статический компонент (поддержание позы, регистрация напряжения мышц)

готовность к смене двигательного состава

плавность

содружественные движения (синергии – размах руками при ходьбе)

заучивание двигательных актов (навык).

Экстрапирамидная система регулируется пирамидной. Мозжечок координирует взаимодействие пирамидной и экстрапирамидной систем.

Название Уровня Анатомические Структуры Набор Движений Основные Афферентации
А) Пубоспинальный Спинной мозг. Красное Ядро. Гипоталамус. Мозжечок. Движение глаз, гладкой мускулатуры, мышечный тонус, физиологический тремор. Простые локомоции. Протопатичексая чувствительность.
Б) Талламо-паллидарный Зрительный бугор, хвостатое ядро, бледный шар, скорлупа. Быстрота и плавность согласованных движений мышц-антогонистов. Дифференцированная проприоцептивная чувствительность.
В) Пирамидно-стриальный. Корковые отделы пирамидной системы, хвостатое ядро, полосатое тело. Перемещение в пространстве тела и/или отдельных его частей. Координация и точность движений. Экстрацептивная.
Г) Теменно-премоторный. Кора головного мозга.Сенсомоторная зона. Произвольные и непроизвольные предметные действия. Навыки. Мнемическая. Полимодальная.
Д) Теменно-премоторный. Область ТРО – задняя ассоциативная зона. Теменная кора. Премоторная (задне-лобная область). Произвольные действия с символами, речевая моторика, символические движения. Мнемическая. Полимодальная. Кольцевая связь с префронтальными отделами и мозжечком (афферентный синтез).

Основные положения теории процесс жизни есть не простое «уравновешивание с внешней средой» , а активное преодоление этой среды; процесс построения движений, в котором между мозгом и исполнительными органами существует не только прямая, но и непрерывная обратная связь;

для построения движений различной сложности команды отдаются на различных уровнях нервной системы. При автоматизации движений функции управления передаются на более низкий (неосознаваемый) уровень; «повторение без повторения» .

Вывод 1 тренировка движения состоит не в стандартизации команд, не в «научении командам» , а в научении каждый раз отыскивать и передавать такую команду, которая в условиях каждого конкретного повторения движения приведет к нужному двигательному результату.

Вывод 2 Движение не хранится готовым в памяти, а каждый раз строится заново в процессе самого действия, чутко реагируя на изменяющуюся ситуацию. В памяти хранятся не штампы самих движений, а предписания для их конструирования, которые строятся на основе механизма не стереотипного воспроизведения, а целесообразного приспособления.

Уровни построения движения Физиологический уровень построения движений – это совокупность взаимно обусловливающих друга явлений, таких как: а) особый класс двигательных задач; б) соответствующий им тип коррекций; в) определенный мозговой этаж и (как итог всего предыдущего); г) определенный класс (список) движений.

У человека 5 уровней A – уровень тонуса и осанки; B – уровень синергии (согласованных мышечных сокращений); C – уровень пространственного поля; D – уровень предметных действий (смысловых цепей); E – группа высших кортикальных уровней символической координации (письма, речи и т. п.).

Основные трудности управления движениями необычайное богатство подвижности двигательного аппарата человеческого тела, ; необходимость ограничения огромного избытка степеней свободы; упругая податливость мышечных тяг; множество внешних сил, возникающих в процессе движения, направленность и интенсивность действия которых трудно (а зачастую и невозможно) предугадать.

Формирование двигательного навыка Двигательное умение – это такая степень владения техникой действия, когда управление осуществляется при ведущей роли сознания, а само действие отличается нестабильным способом решения двигательной задачи.

Характерные черты двигательного умения управление движениями происходит при ведущей роли сознания; отсутствие стабильности, постоянный поиск способов наилучшего решения двигательной задачи; невысокая скорость; малая прочность, неустойчивость к сбивающим факторам; отсутствие возможности для переключения внимания на объекты окружающей обстановки.

Факторы первоначального умения выполнять двигательное действие уже имеющегося двигательного опыта, ранее выработанных координаций, ощущений и восприятий; состояния общей физической подготовленности; знания техники действия и особенностей его выполнения; сознательных попыток построить некоторую новую для себя систему движений.

Двигательный навык – это такая степень владения техникой действия, при которой управление движениями происходит автоматически и выполнение действия отличается высокой надежностью.

Черты двигательных навыков автоматизированный характер управления действием; высокая быстрота действия; стабильность результата действия; чрезвычайная прочность и надежность.

Фазы определение ведущего уровня; определение двигательного состава навыка; выявление и роспись коррекций; автоматизация, стандартизация и стабилизация двигательного навыка.

Стадии формирования навыка 1. Первая стадия: невысокая скорость, напряженность, неточность движений. 2. Вторая стадия: исчезновение напряженности, становление мышечной координации, повышение скорости и точности двигательного акта. 3. Третья стадия: снижение доли участия активных мышечных усилий в осуществлении движения за счет использования реактивных сил, что обеспечивает динамическую устойчивость движений и экономичность энергозатрат. В течение этой стадии реализуются фазы стандартизации и стабилизации двигательного навыка. блокирование излишних степеней свободы кинематической цепи. роспись коррекций и автоматизация управления