Как найти мю в химии. Что такое моль

Решение о необходимости ведения такой тетради пришло не сразу, а постепенно, с накоплением опыта работы.

Вначале это было место в конце рабочей тетради – несколько страниц для записи наиболее важных определений. Затем туда же были вынесены наиболее важные таблицы. Потом пришло осознание того, что большинству учеников для того, чтобы научиться решать задачи, необходимы строгие алгоритмические предписания, которые они, прежде всего, должны понять и запомнить.

Вот тогда и пришло решение о ведении, кроме рабочей тетради, еще одной обязательной тетради по химии – химического словаря. В отличие от рабочих тетрадей, которых может быть даже две в течение одного учебного года, словарь - это единая тетрадь на весь курс обучения химии. Лучше всего, если эта тетрадь будет иметь 48 листов и прочную обложку.

Материал в этой тетради мы располагаем следующим образом: в начале – наиболее важные определения, которые ребята выписывают из учебника или записывают под диктовку учителя. Например, на первом уроке в 8-м классе это определение предмета “химия”, понятие “химические реакции”. В течение учебного года в 8-м классе их накапливается более тридцати. По этим определениям на некоторых уроках я провожу опросы. Например, устный вопрос по цепочке, когда один ученик задает вопрос другому, если тот ответил правильно, значит, уже он задает вопрос следующему; или, когда одному ученику задают вопросы другие ученики, если он не справляется с ответом, значит, отвечают сами. По органической химии это в основном определения классов органических веществ и главных понятий, например, “гомологи”, “изомеры” и др.

В конце нашей справочной тетради представлен материал в виде таблиц и схем. На последней странице располагается самая первая таблица “Химические элементы. Химические знаки”. Затем таблицы “Валентность”, “Кислоты”, “Индикаторы”, “Электрохимический ряд напряжений металлов”, “Ряд электроотрицательности”.

Особенно хочу остановиться на содержании таблицы “Соответствие кислот кислотным оксидам”:

Соответствие кислот кислотным оксидам
Кислотный оксид Кислота
Название Формула Название Формула Кислотный остаток, валентность
оксид углерода (II) CO 2 угольная H 2 CO 3 CO 3 (II)
оксид серы (IV) SO 2 сернистая H 2 SO 3 SO 3 (II)
оксид серы (VI) SO 3 серная H 2 SO 4 SO 4 (II)
оксид кремния (IV) SiO 2 кремниевая H 2 SiO 3 SiO 3 (II)
оксид азота (V) N 2 O 5 азотная HNO 3 NO 3 (I)
оксид фосфора (V) P 2 O 5 фосфорная H 3 PO 4 PO 4 (III)

Без понимания и запоминания этой таблицы затрудняется составление учениками 8-х классов уравнений реакций кислотных оксидов со щелочами.

При изучении теории электролитической диссоциации в конце тетради записываем схемы и правила.

Правила составления ионных уравнений:

1. В виде ионов записывают формулы сильных электролитов, растворимых в воде.

2. В молекулярном виде записывают формулы простых веществ, оксидов, слабых электролитов и всех нерастворимых веществ.

3. Формулы малорастворимых веществ в левой части уравнения записывают в ионном виде, в правой – в молекулярном.

При изучении органической химии записываем в словарь обобщающие таблицы по углеводородам, классам кислород - и азотсодержащих веществ, схемы по генетической связи.

Физические величины
Обозначение Название Единицы Формулы
количество вещества моль = N / N A ; = m / М;

V / V m (для газов)

N A постоянная Авогадро молекулы, атомы и другие частицы N A = 6,02 10 23
N число частиц молекулы,

атомы и другие частицы

N = N A
M молярная масса г/моль, кг/кмоль M = m / ; / М/ = М r
m масса г, кг m = M ; m = V
V m молярный объём газа л / моль, м 3 /кмоль Vm = 22,4 л / моль=22,4 м 3 /кмоль
V объём л, м 3 V = V m (для газов) ;
плотность г / мл; = m / V;

M / V m (для газов)

За 25 – летний период преподавания химии в школе мне пришлось работать по разным программам и учебникам. При этом всегда удивляло то, что практически ни один учебник не учит решать задачи. В начале изучения химии для систематизации и закрепления знаний в словаре мы с учениками составляем таблицу “Физические величины” с новыми величинами:

При обучении учащихся способам решения расчётных задач очень большое значение придаю алгоритмам. Я считаю, что строгие предписания последовательности действий позволяют слабому ученику разобраться в решении задач определённого типа. Для сильных учеников - это возможность выхода на творческий уровень своего дальнейшего химического образования и самообразования, так как для начала нужно уверенно овладеть сравнительно небольшим числом стандартных приёмов. На базе этого разовьётся умение правильно их применять на разных стадиях решения более сложных задач. Поэтому алгоритмы решения расчётных задач составлены мною для всех типов задач школьного курса и для факультативных занятий.

Приведу примеры некоторых из них.

Алгоритм решения задач по химическим уравнениям.

1. Записать кратко условие задачи и составить химическое уравнение.

2. Над формулами в химическом уравнении надписать данные задачи, под формулами пописать число моль (определяют по коэффициенту).

3. Найти количество вещества, масса или объём которого даны в условии задачи, по формулам:

M / M; = V / V m (для газов V m = 22,4 л / моль).

Полученное число надписать над формулой в уравнении.

4. Найти количество вещества, масса или объём которого неизвестны. Для этого провести рассуждение по уравнению: сравнить число моль по условию с числом моль по уравнению. При необходимости составить пропорцию.

5. Найти массу или объём по формулам: m = M ; V = V m .

Данный алгоритм – это основа, которую должен освоить ученик, чтобы в дальнейшем он смог решать задачи по уравнениям с различными усложнениями.

Задачи на избыток и недостаток.

Если в условии задачи известны количества, массы или объёмы сразу двух реагирующих веществ, то это задача на избыток и недостаток.

При её решении:

1. Нужно найти количества двух реагирующих веществ по формулам:

M /M; = V/V m .

2. Полученные числа моль надписать над уравнением. Сравнив их с числом моль по уравнению, сделать вывод о том, какое вещество дано в недостатке.

3. По недостатку производить дальнейшие расчёты.

Задачи на долю выхода продукта реакции, практически полученного от теоретически возможного.

По уравнениям реакций проводят теоретические расчёты и находят теоретические данные для продукта реакции: теор. , m теор. или V теор. . При проведении реакций в лаборатории или в промышленности происходят потери, поэтому полученные практические данные практ. ,

m практ. или V практ. всегда меньше теоретически рассчитанных данных. Долю выхода обозначают буквой (эта) и рассчитывают по формулам:

(эта) = практ. / теор. = m практ. / m теор. = V практ. / V теор.

Выражают её в долях от единицы или в процентах. Можно выделить три типа задач:

Если в условии задачи известны данные для исходного вещества и доля выхода продукта реакции, при этом нужно найти практ. , m практ. или V практ. продукта реакции.

Порядок решения:

1. Произвести расчёт по уравнению, исходя из данных для исходного вещества, найти теор. , m теор. или V теор. продукта реакции;

2. Найти массу или объём продукта реакции, практически полученного, по формулам:

m практ. = m теор. ; V практ. = V теор . ; практ. = теор. .

Если в условии задачи известны данные для исходного вещества и практ. , m практ. или V практ. полученного продукта, при этом нужно найти долю выхода продукта реакции.

Порядок решения:

1. Произвести расчёт по уравнению, исходя из данных для исходного вещества, найти

Теор. , m теор. или V теор. продукта реакции.

2. Найти долю выхода продукта реакции по формулам:

Практ. / теор. = m практ. / m теор. = V практ. /V теор.

Если в условии задачи известны практ. , m практ. или V практ. полученного продукта реакции и доля выхода его, при этом нужно найти данные для исходного вещества.

Порядок решения:

1. Найти теор., m теор. или V теор. продукта реакции по формулам:

Теор. = практ. / ; m теор. = m практ. / ; V теор. = V практ. / .

2. Произвести расчёт по уравнению, исходя из теор. , m теор. или V теор. продукта реакции и найти данные для исходного вещества.

Конечно, эти три типа задач мы рассматриваем постепенно, отрабатываем умения решения каждого из них на примере целого ряда задач.

Задачи на смеси и примеси.

Чистое вещество – это то, которого в смеси больше, остальное – примеси. Обозначения: масса смеси – m см., масса чистого вещества – m ч.в., масса примесей – m прим. , массовая доля чистого вещества - ч.в.

Массовую долю чистого вещества находят по формуле: ч.в. = m ч.в. / m см. , выражают её в долях от единицы или в процентах. Выделим 2 типа задач.

Если в условии задачи дана массовая доля чистого вещества ил массовая доля примесей, значит, при этом дана масса смеси. Слово “технический” тоже означает наличие смеси.

Порядок решения:

1. Найти массу чистого вещества по формуле: m ч.в. = ч.в. m см.

Если дана массовая доля примесей, то предварительно нужно найти массовую долю чистого вещества: ч.в. = 1 - прим.

2. Исходя из массы чистого вещества, производить дальнейшие расчёты по уравнению.

Если в условии задачи дана масса исходной смеси и n , m или V продукта реакции, при этом нужно найти массовую долю чистого вещества в исходной смеси или массовую долю примесей в ней.

Порядок решения:

1. Произвести расчёт по уравнению, исходя из данных для продукта реакции, и найти n ч.в. и m ч.в.

2. Найти массовую долю чистого вещества в смеси по формуле: ч.в. = m ч.в. / m см. и массовую долю примесей: прим. = 1 - ч.в

Закон объёмных отношений газов.

Объёмы газов относятся так же, как их количества веществ:

V 1 / V 2 = 1 / 2

Этот закон применяют при решении задач по уравнениям, в которых дан объём газа и нужно найти объём другого газа.

Объёмная доля газа в смеси.

Vг / Vсм, где (фи) – объёмная доля газа.

Vг – объём газа, Vcм – объём смеси газов.

Если в условии задачи даны объёмная доля газа и объём смеси, то, прежде всего, нужно найти объём газа: Vг = Vсм.

Объём смеси газов находят по формуле: Vсм = Vг / .

Объём воздуха, затраченный на сжигание вещества, находят через объём кислорода, найденный по уравнению:

Vвозд. = V(О 2) / 0,21

Вывод формул органических веществ по общим формулам.

Органические вещества образуют гомологические ряды, которые имеют общие формулы. Это позволяет:

1. Выражать относительную молекулярную массу через число n.

M r (C n H 2n + 2) = 12 n + 1 (2n + 2) = 14n + 2.

2. Приравнивать M r , выраженную через n, к истинной M r и находить n.

3. Составлять уравнения реакций в общем виде и производить по ним вычисления.

Вывод формул веществ по продуктам сгорания.

1. Проанализировать состав продуктов сгорания и сделать вывод о качественном составе сгоревшего вещества: Н 2 О -> Н, СО 2 -> С, SO 2 -> S, P 2 O 5 -> P, Na 2 CO 3 -> Na, C.

Наличие кислорода в веществе требует проверки. Обозначить индексы в формуле через x, y, z. Например, СxНyОz (?).

2. Найти количество веществ продуктов сгорания по формулам:

n = m / M и n = V / Vm.

3. Найти количества элементов, содержавшихся в сгоревшем веществе. Например:

n (С) = n (СО 2), n (Н) = 2 ћ n (Н 2 О), n (Na) = 2 ћ n (Na 2 CO 3), n (C) = n (Na 2 CO 3) и т.д.

Vm = г / л 22, 4 л / моль; r = m / V.

b) если известна относительная плотность: М 1 = D 2 М 2 , M = D H2 2, M = D O2 32,

M = D возд. 29, М = D N2 28 и т.д.

1 способ: найти простейшую формулу вещества (см. предыдущий алгоритм) и простейшую молярную массу. Затем сравнить истинную молярную массу с простейшей и увеличить индексы в формуле в нужное число раз.

2 способ: найти индексы по формуле n = (э) Mr / Ar(э).

Если неизвестна массовая доля одного из элементов, то её нужно найти. Для этого из 100 % или из единицы вычесть массовую долю другого элемента.

Постепенно в курсе изучения химии в химическом словаре происходит накопление алгоритмов решения задач разных типов. И ученик всегда знает, где ему найти нужную формулу или нужные сведения для решения задачи.

Многим учащимся нравится ведение такой тетради, они сами дополняют её различными справочными материалами.

Что касается факультативных занятий, то мы с учениками тоже заводим отдельную тетрадь для записи алгоритмов решения задач, выходящих за рамки школьной программы. В этой же тетради для каждого типа задач записываем 1-2 примера, остальные задачи они решают уже в другой тетради. И, если вдуматься, то среди тысяч разных задач, встречающихся на экзамене по химии во всех ВУЗах, можно выделить задачи 25 – 30 различных типов. Конечно, среди них – множество вариаций.

В разработке алгоритмов решения задач на факультативных занятиях мне во многом помогло пособие А.А. Кушнарёва. (Учимся решать задачи по химии, - М., Школа – пресс, 1996).

Умение решать задачи по химии это основной критерий творческого усвоения предмета. Именно через решение задач различных уровней сложности может быть эффективно усвоен курс химии.

Если ученик имеет чёткое представление о всех возможных типах задач, прорешал большое количество задач каждого типа, то ему по силам справиться со сдачей экзамена по химии в виде ЕГЭ и при поступлении в вузы.

Одной из основных единиц в Международной системе единиц (СИ) является единица количества вещества – моль.

Моль это такое количество вещества, которое содержит столько структурных единиц данного вещества (молекул, атомов, ионов и др.), сколько атомов углерода содержится в 0,012 кг (12 г) изотопа углерода 12 С .

Учитывая, что значение абсолютной атомной массы для углерода равно m (C) = 1,99 · 10  26 кг, можно рассчитать число атомов углерода N А , содержащееся в 0,012 кг углерода.

Моль любого вещества содержит одно и то же число частиц этого вещества (структурных единиц). Число структурных единиц, содержащихся в веществе количеством один моль равно 6,02·10 23 и называется числом Авогадро (N А ).

Например, один моль меди содержит 6,02·10 23 атомов меди (Cu), а один моль водорода (H 2) – 6,02·10 23 молекул водорода.

Молярной массой (M) называется масса вещества, взятого в количестве 1 моль.

Молярная масса обозначается буквой М и имеет размерность [г/моль]. В физике пользуются размерностью [кг/кмоль].

В общем случае численное значение молярной массы вещества численно совпадает со значением его относительной молекулярной (относительной атомной) массы.

Например, относительная молекулярная масса воды равна:

Мr(Н 2 О) = 2Аr (Н) + Аr (O) = 2∙1 + 16 = 18 а.е.м.

Молярная масса воды имеет ту же величину, но выражена в г/моль:

М (Н 2 О) = 18 г/моль.

Таким образом, моль воды, содержащий 6,02·10 23 молекул воды (соответственно 2·6,02·10 23 атомов водорода и 6,02·10 23 атомов кислорода), имеет массу 18 граммов. В воде, количеством вещества 1 моль, содержится 2 моль атомов водорода и один моль атомов кислорода.

1.3.4. Связь между массой вещества и его количеством

Зная массу вещества и его химическую формулу, а значит и значение его молярной массы, можно определить количество вещества и, наоборот, зная количество вещества, можно определить его массу. Для подобных расчетов следует пользоваться формулами:

где ν – количество вещества, [моль]; m – масса вещества, [г] или [кг]; М – молярная масса вещества, [г/моль] или [кг/кмоль].

Например, для нахождения массы сульфата натрия (Na 2 SO 4) количеством 5 моль найдем:

1) значение относительной молекулярной массы Na 2 SO 4 , представляющую собой сумму округленных значений относительных атомных масс:

Мr(Na 2 SO 4) = 2Аr(Na) + Аr(S) + 4Аr(O) = 142,

2) численно равное ей значение молярной массы вещества:

М(Na 2 SO 4) = 142 г/моль,

3) и, наконец, массу 5 моль сульфата натрия:

m = ν · M = 5 моль · 142 г/моль = 710 г.

Ответ: 710.

1.3.5. Связь между объемом вещества и его количеством

При нормальных условиях (н.у.), т.е. при давлении р , равном 101325 Па (760 мм. рт. ст.), и температуре Т, равной 273,15 К (0 С), один моль различных газов и паров занимает один и тот же объем, равный 22,4 л.

Объем, занимаемый 1 моль газа или пара при н.у., называется молярным объемом газа и имеет размерность литр на моль.

V мол = 22,4 л/моль.

Зная количество газообразного вещества (ν) и значение молярного объема (V мол) можно рассчитать его объем (V) при нормальных условиях:

V = ν · V мол,

где ν – количество вещества [моль]; V – объем газообразного вещества [л]; V мол = 22,4 л/моль.

И, наоборот, зная объем (V ) газообразного вещества при нормальных условиях, можно рассчитать его количество (ν):

Задачи на определение формулы органического вещества бывают нескольких видов. Обычно решение этих задач не представляет особых сложностей, однако часто выпускники теряют баллы на этой задаче. Причин бывает несколько:

  1. Некорректное оформление;
  2. Решение не математическим путем, а методом перебора;
  3. Неверно составленная общая формула вещества;
  4. Ошибки в уравнении реакции с участием вещества, записанного в общем виде.

Типы задач в задании С5.

  1. Определение формулы вещества по массовым долям химических элементов или по общей формуле вещества;
  2. Определение формулы вещества по продуктам сгорания;
  3. Определение формулы вещества по химическим свойствам.

Необходимые теоретические сведения.

  1. Массовая доля элемента в веществе.
    Массовая доля элемента — это его содержание в веществе в процентах по массе.
    Например, в веществе состава С 2 Н 4 содержится 2 атома углерода и 4 атома водорода. Если взять 1 молекулу такого вещества, то его молекулярная масса будет равна:
    Мr(С 2 Н 4) = 2 12 + 4 1 = 28 а.е.м. и там содержится 2 12 а.е.м. углерода.

    Чтобы найти массовую долю углерода в этом веществе, надо его массу разделить на массу всего вещества:
    ω(C) = 12 2 / 28 = 0,857 или 85,7%.
    Если вещество имеет общую формулу С х Н у О z , то массовые доли каждого их атомов так же равны отношению их массы к массе всего вещества. Масса х атомов С равна — 12х, масса у атомов Н — у, масса z атомов кислорода — 16z.
    Тогда
    ω(C) = 12 х / (12х + у + 16z)

    Если записать эту формулу в общем виде, то получится следующее выражение:

  2. Молекулярная и простейшая формула вещества.

    Молекулярная (истинная) формула — формула, в которой отражается реальное число атомов каждого вида, входящих в молекулу вещества.
    Например, С 6 Н 6 — истинная формула бензола.
    Простейшая (эмпирическая) формула — показывает соотношение атомов в веществе.
    Например, для бензола соотношение С:Н = 1:1, т.е. простейшая формула бензола — СН.
    Молекулярная формула может совпадать с простейшей или быть кратной ей.

    Примеры.

    Если в задаче даны только массовые доли элементов, то в процессе решения задачи можно вычислить только простейшую формулу вещества. Для получения истинной формулы в задаче обычно даются дополнительные данные — молярная масса, относительная или абсолютная плотность вещества или другие данные, с помощью которых можно определить молярную массу вещества.

  3. Относительная плотность газа Х по газу У — D поУ (Х).
    Относительная плотность D — это величина, которая показывает, во сколько раз газ Х тяжелее газа У. Её рассчитывают как отношение молярных масс газов Х и У:
    D поУ (Х) = М(Х) / М(У)
    Часто для расчетов используют относительные плотности газов по водороду и по воздуху .
    Относительная плотность газа Х по водороду:
    D по H 2 = M (газа Х) / M (H 2) = M (газа Х) / 2
    Воздух — это смесь газов, поэтому для него можно рассчитать только среднюю молярную массу. Её величина принята за 29 г/моль (исходя из примерного усреднённого состава).
    Поэтому:
    D по возд. = М (газа Х) / 29
  4. Абсолютная плотность газа при нормальных условиях.

    Абсолютная плотность газа — это масса 1 л газа при нормальных условиях. Обычно для газов её измеряют в г/л.
    ρ = m (газа) / V (газа)
    Если взять 1 моль газа, то тогда:
    ρ = М / V m ,
    а молярную массу газа можно найти, умножая плотность на молярный объём.

  5. Общие формулы веществ разных классов.
    Часто для решения задач с химическими реакциями удобно пользоваться не обычной общей формулой, а формулой, в которой выделена отдельно кратная связь или функциональная группа.
    Класс органических веществ Общая молекулярная формула Формула с выделенной кратной связью и функциональной группой
    Алканы C n H 2n+2
    Алкены C n H 2n C n H 2n+1 -CH=CH 2
    Алкины C n H 2n−2 C n H 2n+1 -C≡CH
    Диены C n H 2n−2
    Гомологи бензола C n H 2n−6 С 6 Н 5 -С n H 2n+1
    Предельные одноатомные спирты C n H 2n+2 O C n H 2n+1 -OH
    Многоатомные спирты C n H 2n+2 O x C n H 2n+2−x (OH) x
    Предельные альдегиды C n H 2n O
    Сложные эфиры C n H 2n O 2

Определение формул веществ по массовым долям атомов, входящих в его состав.

Решение таких задач состоит из двух частей:

  • сначала находят мольное соотношение атомов в веществе — оно соответствует его простейшей формуле. Например, для вещества состава А х В у соотношение количеств веществ А и В соответствует соотношению числа их атомов в молекуле:
    х: у = n(A) : n(B);
  • затем, используя молярную массу вещества, определяют его истинную формулу.

    Пример 1.
    Определить формулу вещества, если оно содержит 84,21% С и 15,79% Н и имеет относительную плотность по воздуху, равную 3,93.

Решение примера 1.

  1. Пусть масса вещества равна 100 г. Тогда масса С будет равна 84,21 г, а масса Н — 15,79 г.
  2. Найдём количество вещества каждого атома:
    ν(C) = m / M = 84,21 / 12 = 7,0175 моль,
    ν(H) = 15,79 / 1 = 15,79 моль.
  3. Определяем мольное соотношение атомов С и Н:
    С: Н = 7,0175: 15,79 (сократим оба числа на меньшее) = 1: 2,25 (домножим на 4) = 4: 9.
    Таким образом, простейшая формула — С 4 Н 9 .
  4. По относительной плотности рассчитаем молярную массу:
    М = D (возд.) 29 = 114 г/моль.
    Молярная масса, соответствующая простейшей формуле С 4 Н 9 — 57 г/моль, это в 2 раза меньше истинно молярной массы.
    Значит, истинная формула — С 8 Н 18 .

Есть гораздо более простой метод решения такой задачи, но, к сожалению, за него не поставят полный балл . Зато он подойдёт для проверки истинной формулы, т.е. с его помощью вы можете проверить своё решение.

Метод 2: Находим истинную молярную массу (114 г/моль), а затем находим массы атомов углерода и водорода в этом веществе по их массовым долям.
m(C) = 114 0,8421 = 96; т.е. число атомов С 96/12 = 8
m(H) = 114 0,1579 = 18; т.е число атомов Н 18/1 = 18.
Формула вещества — С 8 Н 18 .

Ответ: С 8 Н 18 .

    Пример 2.
    Определить формулу алкина с плотностью 2,41 г/л при нормальных условиях.

Решение примера 2.

Общая формула алкина С n H 2n−2
Как, имея плотность газообразного алкина, найти его молярную массу? Плотность ρ — это масса 1 литра газа при нормальных условиях.
Так как 1 моль вещества занимает объём 22,4 л, то необходимо узнать, сколько весят 22,4 л такого газа:
M = (плотность ρ) (молярный объём V m) = 2,41 г/л 22,4 л/моль = 54 г/моль.
Далее, составим уравнение, связывающее молярную массу и n:

14 n − 2 = 54, n = 4.
Значит, алкин имеет формулу С 4 Н 6 .

Ответ: С 4 Н 6 .

    Пример 3.
    Определить формулу предельного альдегида, если известно, что 3 10 22 молекул этого альдегида весят 4,3 г.

Решение примера 3.

В этой задаче дано число молекул и соответствующая масса. Исходя из этих данных, нам необходимо вновь найти величину молярной массы вещества.
Для этого нужно вспомнить, какое число молекул содержится в 1 моль вещества.
Это число Авогадро: N a = 6,02 10 23 (молекул).
Значит, можно найти количество вещества альдегида:
ν = N / Na = 3 10 22 / 6,02 10 23 = 0,05 моль ,
и молярную массу:
М = m / n = 4,3 / 0,05 = 86 г/моль .
Далее, как в предыдущем примере, составляем уравнение и находим n.
Общая формула предельного альдегида С n H 2n O, то есть М = 14n + 16 = 86, n = 5 .

Ответ: С 5 Н 10 О, пентаналь.

    Пример 4.
    Определить формулу дихлоралкана, содержащего 31,86 % углерода.

Решение примера 4.

Общая формула дихлоралкана: С n H 2n Cl 2 , там 2 атома хлора и n атомов углерода.
Тогда массовая доля углерода равна:
ω(C) = (число атомов C в молекуле) (атомная масса C) / (молекулярная масса дихлоралкана)
0,3186 = n 12 / (14n + 71)
n = 3, вещество — дихлорпропан.

Ответ: С 3 Н 6 Cl 2 , дихлорпропан.

Определение формул веществ по продуктам сгорания.

В задачах на сгорание количества веществ элементов, входящих в исследуемое вещество, определяют по объёмам и массам продуктов сгорания — углекислого газа, воды, азота и других. Остальное решение — такое же, как и в первом типе задач.

    Пример 5.
    448 мл (н. у.) газообразного предельного нециклического углеводорода сожгли, и продукты реакции пропустили через избыток известковой воды, при этом образовалось 8 г осадка. Какой углеводород был взят?

Решение примера 5.

  1. Общая формула газообразного предельного нециклического углеводорода (алкана) — C n H 2n+2
    Тогда схема реакции сгорания выглядит так:

    C n H 2n+2 + О 2 → CO 2 + H 2 O
    Нетрудно заметить, что при сгорании 1 моль алкана выделится n моль углекислого газа.

    Количество вещества алкана находим по его объёму (не забудьте перевести миллилитры в литры!):

    ν(C n H 2n+2) = 0,488 / 22,4 = 0,02 моль.

  2. При пропускании углекислого газа через известковую воду Са(ОН) 2 выпадает осадок карбоната кальция:

    СО 2 + Са(ОН) 2 = СаСО 3 + Н 2 О

    Масса осадка карбоната кальция — 8 г, молярная масса карбоната кальция 100 г/моль.

    Значит, его количество вещества
    ν(СаСО 3) = 8 / 100 = 0,08 моль.
    Количество вещества углекислого газа тоже 0,08 моль.

  3. Количество углекислого газа в 4 раза больше чем алкана, значит формула алкана С 4 Н 10 .

Ответ: С 4 Н 10 .

    Пример 6.
    Относительная плотность паров органического соединения по азоту равна 2. При сжигании 9,8 г этого соединения образуется 15,68 л углекислого газа (н. у) и 12,6 г воды. Выведите молекулярную формулу органического соединения.

Решение примера 6.

Так как вещество при сгорании превращается в углекислый газ и воду, значит, оно состоит из атомов С, Н и, возможно, О. Поэтому его общую формулу можно записать как С х Н у О z .

  1. Схему реакции сгорания мы можем записать (без расстановки коэффициентов):

    С х Н у О z + О 2 → CO 2 + H 2 O

    Весь углерод из исходного вещества переходит в углекислый газ, а весь водород — в воду.

  2. Находим количества веществ CO 2 и H 2 O, и определяем, сколько моль атомов С и Н в них содержится:
    ν(CO 2) = V / V m = 15,68 / 22,4 = 0,7 моль.
    На одну молекулу CO 2 приходится один атом С, значит, углерода столько же моль, сколько CO 2 .

    ν(C) = 0,7 моль

    В одной молекуле воды содержатся два атома Н, значит количество водорода в два раза больше , чем воды.
    ν(H) = 0,7 2 = 1,4 моль.

  3. Проверяем наличие в веществе кислорода. Для этого из массы всего исходного вещества надо вычесть массы С и Н.
    m(C) = 0,7 12 = 8,4 г, m(H) = 1,4 1 = 1,4 г
    Масса всего вещества 9,8 г.
    m(O) = 9,8 − 8,4 − 1,4 = 0 , т.е.в данном веществе нет атомов кислорода.
    Если бы кислород в данном веществе присутствовал, то по его массе можно было бы найти количество вещества и рассчитывать простейшую формулу, исходя из наличия трёх разных атомов.
  4. Дальнейшие действия вам уже знакомы: поиск простейшей и истинной формул.
    С: Н = 0,7: 1,4 = 1: 2
    Простейшая формула СН 2 .
  5. Истинную молярную массу ищем по относительной плотности газа по азоту (не забудьте, что азот состоит из двухатомных молекул N 2 и его молярная масса 28 г/моль):
    M ист. = D по N 2 M (N 2) = 2 28 = 56 г/моль.
    Истиная формула СН 2 , её молярная масса 14.
    56 / 14 = 4.
    Истинная формула С 4 Н 8 .

Ответ: С 4 Н 8 .

    Пример 7.
    Определите молекулярную формулу вещества, при сгорании 9 г которого образовалось 17,6 г CO 2 , 12,6 г воды и азот. Относительная плотность этого вещества по водороду — 22,5. Определить молекулярную формулу вещества.

Решение примера 7.

  1. Вещество содержит атомы С,Н и N. Так как масса азота в продуктах сгорания не дана, её надо будет рассчитывать, исходя из массы всего органического вещества.
    Схема реакции горения:
    С х Н у N z + O 2 → CO 2 + H 2 O + N 2
  2. Находим количества веществ CO 2 и H 2 O, и определяем, сколько моль атомов С и Н в них содержится:

    ν(CO 2) = m / M = 17,6 / 44 = 0,4 моль.
    ν(C) = 0,4 моль.
    ν(Н 2 О) = m / M = 12,6 / 18 = 0,7 моль.
    ν(H) = 0,7 2 = 1,4 моль.

  3. Находим массу азота в исходном веществе.
    Для этого из массы всего исходного вещества надо вычесть массы С и Н.

    M(C) = 0,4 12 = 4,8 г,
    m(H) = 1,4 1 = 1,4 г

    Масса всего вещества 9,8 г.

    M(N) = 9 − 4,8 − 1,4 = 2,8 г,
    ν(N) = m /M = 2,8 / 14 = 0,2 моль.

  4. C: H: N = 0,4: 1,4: 0,2 = 2: 7: 1
    Простейшая формула — С 2 Н 7 N.
    Истинная молярная масса
    М = D по Н 2 М(Н 2) = 22,5 2 = 45 г/моль.
    Она совпадает с молярной массой, рассчитанной для простейшей формулы. То есть это и есть истинная формула вещества.

Ответ: С 2 Н 7 N.

    Пример 8.
    Вещества содержит С, Н, О и S. При сгорании 11 г его выделилось 8,8 г CO 2 , 5,4 г Н 2 О, а сера была полностью переведена в сульфат бария, масса которого оказалась равна 23,3 г. Определить формулу вещества.

Решение примера 8.

Формулу заданного вещества можно представить как C x H y S z O k . При его сжигании получается углекислый газ, вода и сернистый газ, который затем превращают в сульфат бария. Соответственно, вся сера из исходного вещества превращена в сульфат бария.

  1. Находим количества веществ углекислого газа, воды и сульфата бария и соответствующих химических элементов из исследуемого вещества:

    ν(CO 2) = m/M = 8,8/44 = 0,2 моль.
    ν(C) = 0,2 моль.
    ν(Н 2 О) = m / M = 5,4 / 18 = 0,3 моль.
    ν(H) = 0,6 моль.
    ν(BaSO 4) = 23,3 / 233 = 0,1 моль.
    ν(S) = 0,1 моль.

  2. Рассчитываем предполагаемую массу кислорода в исходном веществе:

    M(C) = 0,2 12 = 2,4 г
    m(H) = 0,6 1 = 0,6 г
    m(S) = 0,1 32 = 3,2 г
    m(O) = m вещества − m(C) − m(H) − m(S) = 11 − 2,4 − 0,6 − 3,2 = 4,8 г,
    ν(O) = m / M = 4,8 / 16 = 0,3 моль

  3. Находим мольное соотношение элементов в веществе:
    C: H: S: O = 0,2: 0,6: 0,1: 0,3 = 2: 6: 1: 3
    Формула вещества C 2 H 6 SO 3 .
    Надо отметить, что таким образом мы получили только простейшую формулу.
    Однако, полученная формула является истинной, поскольку при попытке удвоения этой формулы (С 4 Н 12 S 2 O 6) получается, что на 4 атома углерода, помимо серы и кислорода, приходится 12 атомов Н, а это невозможно.

Ответ: C 2 H 6 SO 3 .

Определение формул веществ по химическим свойствам.

    Пример 9.
    Определить формулу алкадиена, если г его могут обесцветить 80 г 2%-го раствора брома.

Решение примера 9.

  1. Общая формула алкадиенов — С n H 2n−2 .
    Запишем уравнение реакции присоединения брома к алкадиену, не забывая, что в молекуле диена две двойные связи и, соответственно, в реакцию с 1 моль диена вступят 2 моль брома:
    С n H 2n−2 + 2Br 2 → С n H 2n−2 Br 4
  2. Так как в задаче даны масса и процентная концентрация раствора брома, прореагировавшего с диеном, можно рассчитать количества вещества прореагировавшего брома:

    M(Br 2) = m раствора ω = 80 0,02 = 1,6 г
    ν(Br 2) = m / M = 1,6 / 160 = 0,01 моль.

  3. Так как количество брома, вступившего в реакцию, в 2 раза больше, чем алкадиена, можно найти количество диена и (так как известна его масса) его молярную массу:
    0,005 0,01
    С n H 2n−2 + 2Br 2 → С n H 2n−2 Br 4

    М диена = m / ν = 3,4 / 0,05 = 68 г/моль .

  4. Находим формулу алкадиена по его общей формул, выражая молярную массу через n:

    14n − 2 = 68
    n = 5.

    Это пентадиен С 5 Н 8 .

Ответ: C 5 H 8 .

    Пример 10.
    При взаимодействии 0,74 г предельного одноатомного спирта с металлическим натрием выделился водород в количестве, достаточном для гидрирования 112 мл пропена (н. у.). Что это за спирт?

Решение примера 10.

  1. Формула предельного одноатомного спирта — C n H 2n+1 OH. Здесь удобно записывать спирт в такой форме, в которой легко составить уравнение реакции — т.е. с выделенной отдельно группой ОН.
  2. Составим уравнения реакций (нельзя забывать о необходимости уравнивать реакции):

    2C n H 2n+1 OH + 2Na → 2C n H 2n+1 ONa + H 2
    C 3 H 6 + H 2 → C 3 H 8

  3. Можно найти количество пропена, а по нему — количество водорода. Зная количество водорода, по реакции находим количество вещества спирта:

    ν(C 3 H 6) = V / V m = 0,112 / 22,4 = 0,005 моль => ν(H 2) = 0,005 моль,
    ν спирта = 0,005 2 = 0,01 моль.

  4. Находим молярную массу спирта и n:

    M спирта = m / ν = 0,74 / 0,01 = 74 г/моль,
    14n + 18 = 74
    14n = 56
    n = 4.

    Спирт — бутанол С 4 Н 7 ОН.

Ответ: C 4 H 7 OH.

    Пример 11.
    Определить формулу сложного эфира, при гидролизе 2,64 г которого выделяется 1,38 г спирта и 1,8 г одноосновной карбоновой кислоты.

Решение примера 11.

  1. Общую формулу сложного эфира, состоящего из спирта и кислоты с разным числом атомов углерода можно представить в таком виде:
    C n H 2n+1 COOC m H 2m+1
    Соответственно, спирт будет иметь формулу
    C m H 2m+1 OH,
    а кислота
    C n H 2n+1 COOH .
    Уравнение гидролиза сложного эфира:
    C n H 2n+1 COOC m H 2m+1 + H 2 O → C m H 2m+1 OH + C n H 2n+1 COOH
  2. Согласно закону сохранения массы веществ, сумма масс исходных веществ и сумма масс продуктов реакции равны.
    Поэтому из данных задачи можно найти массу воды:

    M H 2 O = (масса кислоты) + (масса спирта) − (масса эфира) = 1,38 + 1,8 − 2,64 = 0,54 г
    ν H 2 O = m / M = 0,54 / 18 = 0,03 моль

    Соответственно, количества веществ кислоты и спирта тоже равны моль.
    Можно найти их молярные массы:

    М кислоты = m / ν = 1,8 / 0,03 = 60 г/моль,
    М спирта = 1,38 / 0,03 = 46 г/моль.

    Получим два уравнения, из которых найдём m и n:

    M C n H 2n+1 COOH = 14n + 46 = 60, n = 1 — уксусная кислота
    M C m H 2m+1 OH = 14m + 18 = 46, m = 2 — этанол.

    Таким образом, искомый эфир — это этиловый эфир уксусной кислоты, этилацетат.

Ответ: CH 3 COOC 2 H 5 .

    Пример 12.
    Определить формулу аминокислоты, если при действии на 8,9 г её избытком гидроксида натрия можно получить 11,1 г натриевой соли этой кислоты.

Решение примера 12.

  1. Общая формула аминокислоты (если считать, что она не содержит никаких других функциональных групп, кроме одной аминогруппы и одной карбоксильной):
    NH 2 -CH(R)-COOH .
    Можно было бы записать её разными способами, но для удобства написания уравнения реакции лучше выделять в формуле аминокислоты функциональные группы отдельно.
  2. Можно составить уравнение реакции этой аминокислоты с гидроксидом натрия:
    NH 2 -CH(R)-COOH + NaOH → NH 2 -CH(R)-COONa + H 2 O
    Количества вещества аминокислоты и её натриевой соли — равны. При этом мы не можем найти массу какого-либо из веществ в уравнении реакции. Поэтому в таких задачах надо выразить количества веществ аминокислоты и её соли через молярные массы и приравнять их:

    M(аминокислоты NH 2 -CH(R)-COOH) = 74 + М R
    M(соли NH 2 -CH(R)-COONa) = 96 + М R
    ν аминокислоты = 8,9 / (74 + М R),
    ν соли = 11,1 / (96 + М R)
    8,9 / (74 + М R) = 11,1 / (96 + М R)
    М R = 15

    Легко увидеть, что R = CH 3 .
    Можно это сделать математически, если принять, что R — C n H 2n+1 .
    14n + 1 = 15, n = 1 . Установите формулу предельной одноосновной карбоновой кислоты, кальциевая соль которой содержит 30,77 % кальция.

    Часть 2. Определение формулы вещества по продуктам сгорания.

    2-1. Относительная плотность паров органического соединения по сернистому газу равна 2. При сжигании 19,2 г этого вещества образуется 52,8 г углекислого газа (н.у.) и 21,6 г воды. Выведите молекулярную формулу органического соединения.

    2-2. При сжигании органического вещества массой 1,78 г в избытке кислорода получили 0,28 г азота, 1,344 л (н.у.) СО 2 и 1,26 г воды. Определите молекулярную формулу вещества, зная, что в указанной навеске вещества содержится 1,204 10 22 молекул.

    2-3. Углекислый газ, полученный при сгорании 3,4 г углеводорода, пропустили через избыток раствора гидроксида кальция и получили 25 г осадка. Выведите простейшую формулу углеводорода.

    2-4. При сгорании органического вещества, содержащего С, Н и хлор, выделилось 6,72 л (н.у.) углекислого газа, 5,4 г воды, 3,65 г хлороводорода. Установите молекулярную формулу сгоревшего вещества.

    2-5. (ЕГЭ-2011) При сгорании амина выделилось 0,448 л (н.у.) углекислого газа, 0,495 г воды и 0,056 л азота. Определить молекулярную формулу этого амина.

    Часть 3. Определение формулы вещества по химическим свойствам.

    3-1. Определить формулу алкена, если известно, что он 5,6 г его при присоединении воды образуют 7,4 г спирта.

    3-2. Для окисления 2,9 г предельного альдегида до кислоты потребовалось 9,8 г гидроксида меди (II). Определить формулу альдегида.

    3-3. Одноосновная моноаминокислота массой 3 г с избытком бромоводорода образует 6,24 г соли. Определить формулу аминокислоты.

    3-4. При взаимодействии предельного двухатомного спирта массой 2,7 г с избытком калия выделилось 0,672 л водорода. Определить формулу спирта.

    3-5. (ЕГЭ-2011) При окислении предельного одноатомного спирта оксидом меди (II) получили 9,73 г альдегида, 8,65 г меди и воду. Определить молекулярную формулу этого спирта.

    Ответы и комментарии к задачам для самостоятельного решения.

    1-2. С 3 Н 6 (NH 2) 2

    1-3. C 2 H 4 (COOH) 2

    1-5. (HCOO) 2 Ca — формиат кальция, соль муравьиной кислоты

    2-1. С 8 Н 16 О

    2-2. С 3 Н 7 NO

    2-3. С 5 Н 8 (массу водорода находим, вычитая из массы углеводорода массу углерода)

    2-4. C 3 H 7 Cl (не забудьте, что атомы водорода содержатся не только в воде, но и в HCl)

    3-2. С 3 Н 6 О

    3-3. С 2 Н 5 NO 2

    Количество вещества. Моль — единица количества вещества. Число Авогадро

    Помимо рассмотренных ранее абсолютной и относительной массы атомов и молекул, в химии большое значение имеет особая величина — количество вещества. Количество вещества определяется числом структурных единиц (атомов, молекул, ионов или других частиц) этого вещества. Количество вещества обозначается буквой ν. Вы уже знаете, что любая физическая величина имеет свою единицу измерения. Например, длину тела измеряют в метрах, массу вещества — в килограммах. А как измеряют количество вещества? Для измерения количества вещества существует особая единица — моль.

    Моль — это количество вещества, содержащее столько частиц (атомов, молекул или других), сколько содержится атомов углерода в 0,012 кг (т.е. 12 г углерода. Это означает, что один моль цинка, один моль алюминия, один моль углерода содержат одно и то же число атомов. Также это означает, что один моль молекулярного кислорода, один моль воды содержат одно и то же число молекул. Как в первом, так и во втором случаях число частиц (атомов, молекул), которое содержится в одном моль, равно числу атомов в одном моль углерода. Экспериментально установлено, что один моль вещества содержит 6,02 · 1023 частиц (атомов, молекул или других). Таким образом, моль — количество вещества, которое содержит 6,02 · 1023 частиц, из которых состоит эта вещество. Если вещество состоит из атомов (например, цинк, алюминий и др.), то один моль этого вещества — это 6,02 · 1023 ее атомов. Если вещество состоит из молекул (например, кислород, вода и другие), то один моль этого вещества — это 6,02 · 1023 ее молекул. Эта величина 6,02 · 1023 названа в честь известного итальянского ученого Амедео Авогадро «постоянной Авогадро» и обозначается NA. Число Авогадро показывает число частиц в одном моль вещества, поэтому могло бы иметь размерность «частиц / моль». Однако поскольку частицы могут быть разными, слово «частицы» опускается и вместо него в размерность числа Авогадро записывается единица: «1/моль» или «моль-1». Таким образом: NA = 6,02 · 1023 .

    Число Авогадро очень велико. Сравним: если собрать 6,02 · 1023 шаров, имеющих радиус 14 сантиметров, то их суммарный объем составит примерно такой же объем, который занимает вся наша планета Земля.

    Для определения числа атомов (молекул) в определенном количестве вещества необходимо воспользоваться следующей формулой: N = ν · NA,

    где N — число частиц (атомов или молекул).

    Например, определим количество атомов алюминия, содержащиеся в 2 моль вещества алюминия: N (Al) = ν (Al) · NA.

    N (Al) = 2 моль · 6,02 · 1023 = 12,04 · 1023 (атомов).

    Кроме того, можно определить количество вещества по известным числом атомов (молекул):

    Наиболее типичными процессами, осуществляемыми в химии, являются химические реакции, т.е. взаимодействия между какими-то исходными веществами, приводящие к образованию новых веществ. Вещества реагируют в определенных количественных отношениях, которые требуется учитывать, чтобы на получение желаемых продуктов затратить минимальное количество исходных веществ и не создавать бесполезных отходов производства. Для расчета масс реагирующих веществ оказывается необходимой еще одна физическая величина, которая характеризует порцию вещества с точки зрения числа содержащихся в ней структурных единиц. Само по себе эго число необычайно велико. Это очевидно, в частности, из примера 2.2. Поэтому в практических расчетах число структурных единиц заменяется особой величиной, называемой количеством вещества.

    Количество вещества - это мера числа структурных единиц, определяемая выражением

    где N(X) - число структурных единиц вещества X в реально или мысленно взятой порции вещества, N A = 6,02 10 23 - постоянная (число) Авогадро, широко используемая в науке, одна из фундаментальных физических постоянных. В случае необходимости можно использовать более точное значение постоянной Авогадро 6,02214 10 23 . Порция вещества, содержащая N a структурных единиц, представляет собой единичное количество вещества - 1 моль. Таким образом, количество вещества измеряется в молях, а постоянная Авогадро имеет единицу измерения 1/моль, или в другой записи моль -1 .

    При всевозможных рассуждениях и расчетах, связанных со свойствами вещества и химическими реакциями, понятие количество вещества полностью заменяет понятие число структурных единиц. Благодаря этому отпадает необходимость использовать большие числа. Например, вместо того чтобы сказать «взято 6,02 10 23 структурных единиц (молекул) воды», мы скажем: «взят 1 моль воды».

    Всякая порция вещества характеризуется как массой, так и количеством вещества.

    Отношение массы вещества X к количеству вещества называется молярной массой М(Х):

    Молярная масса численно равна массе 1 моль вещества. Это важная количественная характеристика каждого вещества, зависящая только от массы структурных единиц. Число Авогадро установлено таким, что молярная масса вещества, выраженная в г/моль, численно совпадает с относительной молекулярной массой М г Для молекулы воды М г = 18. Это значит, что молярная масса воды М(Н 2 0) = 18 г/моль. Пользуясь данными таблицы Менделеева, можно вычислять и более точные значения М г и М(Х), но в учебных задачах по химии это обычно не требуется. Из всего сказанного понятно, насколько просто рассчитать молярную массу вещества - достаточно сложить атомные массы в соответствии с формулой вещества и поставить единицу измерения г/моль. Поэтому формулу (2.4) практически используют для расчета количества вещества:


    Пример 2.9. Рассчитайте молярную массу питьевой соды NaHC0 3 .

    Решение. Согласно формуле вещества М г = 23 + 1 + 12 + 3 16 = 84. Отсюда, по определению, M(NaIIC0 3) = 84 г/моль.

    Пример 2.10. Какое количество вещества составляют 16,8 г питьевой соды? Решение. M(NaHC0 3) = 84 г/моль (см. выше). По формуле (2.5)

    Пример 2.11. Сколько толик (структурных единиц) питьевой соды находится в 16,8 г вещества?

    Решение. Преобразуя формулу (2.3), находим:

    AT(NaHC0 3) = N a n(NaHC0 3);

    tt(NaHC0 3) = 0,20 моль (см. пример 2.10);

    N(NaHC0 3) = 6,02 10 23 моль" 1 0,20 моль = 1,204 10 23 .

    Пример 2.12. Сколько атомов находится в 16,8 г питьевой соды?

    Решение. Питьевая сода, NaHC0 3 , состоит из атомов натрия, водорода, углерода и кислорода. Всего в структурной единице вещества 1 + 1 + 1+ 3 = 6 атомов. Как было найдено в примере 2.11, данная масса питьевой соды состоит из 1,204 10 23 структурных единиц. Поэтому общее число атомов в веществе составляет