Вильгельм Конрад Рентген — краткая биография. Изобретение рентгеновского излучения Ученый рентген биография

Ранним утром 27 марта 1845 года Шарлота Констанца Рентген, жена преуспевающего текстильного торговца Фридриха Конрада Рентгена , разрешилась от бремени сыном. Мальчика назвали Вильгельмом. Когда ему исполнилось 3 года, семья переехала на родину Шарлотты, в голландский город Апельдорн.

В 1862 году Вильгельм поступил в Утрехтскую техническую школу, однако закончить ее ему не удалось по самым что ни на есть объективным причинам. Незадолго до выпуска его исключили из учебного заведения за то, что он отказался «сдать» товарища, нарисовавшего достаточно ехидную карикатуру на одного из школьных преподавателей.

Официальный дальнейший путь в Утрехтский университет при этом для него был закрыт, Однако настырному Вильгельму удалось записаться вольным слушателем и прослушать несколько курсов. А в 1865 году, успешно сдав вступительные экзамены, он поступил на отделение механической инженерии Федерального политехнического университета Цюриха. Уже спустя три года юноша получил степень «доктора философии», но останавливаться на этом не стал, а, по совету своего преподавателя, знаменитого немецкого физика Августа Адольфа Кундта поступил на физическое отделение. Уже через год Рентген блестяще защитил диссертацию, после чего Кундт взял его в свою лабораторию первым ассистентом.

Август Кундт был достаточно активным ученым. Вскоре он, вместе с ассистентом, переехал в Гиссен, а в 1871 году, получив кафедру физики в местном университете, перебрался в Вюрцбург, естественно.

Год спустя, 19 января 1872 года 27-летний Вильгельм, наконец, решился обзавестись семьей. Со своей избранницей, Анной Бертой Людвиг он был знаком уже много лет. Это была дочь цюрихского ресторатора, у которого он, еще будучи студентом, брал пансион.

Фрау Рентген, жена Вильгельма Конрада Рентгена. Фото: www.globallookpress.com

Но статус женатого человека никак не сказался на мобильности молодого специалиста. В 1874 году он, вместе со своим учителем, перебрался в Страсбург, в университете которого получил должность лектора, в 1875 перешел в Академию сельского хозяйства в Гогенхайме, где получил должность «полного профессора физики», а в 1876 вернулся в Страсбург, где целых три года читал лекции по теоретической физике.

Следующим пунктом его деятельности стал опять Гиссен, бывший некогда их первым, совместным с Кундтом, объектом. Однако теперь он прибыл сюда уже как самостоятельное лицо, профессором кафедры физики.

Между тем, в личной жизни у Вильгельма все шло удачно, за исключением одного: супруга никак не могла принести ему ребенка. Но детей Рентгены желали очень и в 1881 году удочерили племянницу, 6-летнюю Жозефину Берту Людвиг .

В Гиссене профессор Рентген проработал 6 лет. Успешного физика приглашали в университеты Иены и Утрехта, но на этот раз он храбро отказывался от заманчивых предложений. Однако, когда в конце августа 1888 года принц Луитпольд предложили ему не только возглавить кафедру физики Вюрцбургского университета, но и стать директором созданного при нем физического института, он не выдержал, и, вместе с семьей, перебрался в Вюрцбург. Тут он проявил себя настолько замечательно, что через шесть лет его почти единогласно избрали ректором университета.

Вильгельм Рентген на рабочем месте. Фото: www.globallookpress.com

Круг его научных интересов был чрезвычайно широк. Если судить по публикациям, Вильгельм Рентген занимался теплопроводностью кристаллов, сжимаемостью воды, электрическими свойствами кварца, электромагнитным вращением плоскости поляризации света в газах. Среди коллег он слыл «тонким классическим физиком-экспериментатором». Все это время он как будто на ощупь шел к главному своему открытию. Которое могло бы и не состояться, если бы не рассеянность ученого, ни его внимательность и не его любознательность.

8 ноября 1895 года в своей лаборатории доктор Рентген экспериментировал с электрическими разрядами в стеклянных вакуумных трубках. Как обычно, эксперименты продолжались до глубокой ночи. Когда стрелки на часах вплотную подошли в верхней отметке, Вильгельм вспомнил, что его ждут в семье, с огромным сожалением прикрыл черным картонным чехлом основной рабочий инструмент - катодную трубку, и погасил в помещении свет.

Перед тем, как выйти, он опять же с сожалением оглядел покидаемое пространство науки. Лаборатория сияла темнотой, но темнота эта была подозрительно неполноценна. Сначала ученый не мог понять, что его в ней смущает, но потом, приглядевшись, заметил на экране из синеродистого бария светящееся пятно непонятной природы. Вне всякого сомнения это был отблеск какого-то светового луча, отражавшегося от зеркала или исходившего из какого-нибудь отверстия. В принципе, на него можно было не обращать внимания, тем более, что к проводимым экспериментам это пятно не могло иметь никакого отношения, время было позднее, а сам ученый был голоден.

Но Вильгельм решил разобраться с вопросом. Не зажигая свет, он попытался определить источник пятна, однако это долгое время ему не давалось. Листы картона, которыми ученый пытался «поймать» луч не действовали: пятно продолжало оставаться на экране, никак не проявляясь на листах. Тогда Вильгельм начал манипулировать с самим экраном, перемещая его по лаборатории. Таким образом он довольно быстро установил, что источник находится под тем самым черным картонным чехлом, которым он четверть часа назад накрыл катодную трубку. Подняв его, он едва не выругался (спасла от этого ученого только глубочайшая культура).

Оказывается, собираясь уходить, он забыл отключить питание катодной трубки. Если бы он просто ушел, то к завтрашнему дню гальванические батареи пришлось бы менять. Но теперь для Рентгена уже не это было важно. Он почувствовал, что находится на пороге чрезвычайно важного открытия. Не выключая трубку, он снова прикрыл ее совершенно непрозрачным и достаточно плотным чехлом. Пятно на экране продолжало светиться так же, как будто никакого препятствия между ним и трубкой не было. Ни о каком возвращении домой уже не могло быть и речи.

По крайней мере, в ближайшие часы. Всю ночь ученый, предусмотрительно послав к жене дежурного с запиской, занимался тем, что ставил на пути неведомого и невидимого луча различные препятствия и препоны и наблюдал за тем, как он на них реагирует. Оказалось, что создаваемый работающей трубкой луч, который Рентген быстро про себя окрестил Х-лучом, практически беспрепятственно проходит через множество материалов.

Через множество, но не через все

«Если пропускать разряд большой катушки Румкорфа через трубку Гитторфа, Крукса, Ленарда или другой подобный прибор, - писал он позже в своей первой, посвященной лучам, работе «О новом роде лучей», - то наблюдается следующее явление. Кусок бумаги, покрытой платиносинеродиотым барием, при приближении к трубке, закрытой достаточно плотно прилегающим к ней чехлом из тонкого черного картона, при каждом разряде вспыхивает ярким светом: начинает флюоресцировать. Флюоресценция видна при достаточном затемнении и не зависит от того, подносить ли бумагу стороной покрытой или не покрытой платиносинеродистым барием. Флюоресценция заметна еще на расстоянии двух метров от трубки.

Легко убедиться, что причины флюоресценции исходят именно от разрядной трубки, а не от какого-нибудь места проводки.

По поводу этого явления проще всего предположить, что черный картон, непрозрачный ни для видимых и ультрафиолетовых лучей солнца, ни для лучей электрической дуги, пронизывается каким-то агентом, вызывающим энергичную флюоресценцию. В таком случае нужно прежде всего исследовать, обладают ли этим свойством и другие тела. Легко найти, что все тела проницаемы для этого агента, но в различной степени. Я приведу несколько примеров. Бумага обладает большой проницаемостью: за переплетенной книгой приблизительно в 1000 страниц я еще вполне свободно различал свечение флюоресцирующего экрана; типографская краска не представляет заметного препятствия. Такова же была флюоресценция за двойной колодой игральных карт. Одна карта, помещенная между трубкой и экраном, производит почти незаметное для глаза действие.

Рентгенограмма руки с кольцом. 1895 год. Фото: www.globallookpress.com

Лист станиоля также почти незаметен. И если только сложить вместе несколько листов, то на экране ясно видна их тень.

Толстые куски дерева еще проницаемы. Еловые доски толщиной от двух до трех сантиметров поглощают очень мало.

Алюминиевая пластинка около 15 мм толщиной сильно ослабляла, но еще не вполне уничтожала флюоресценцию.

Диски из эбонита толщиной в несколько сантиметров еще пропускают лучи.

Стеклянные пластинки одинаковой толщины действуют различно в зависимости от того, содержится в них свинец (флинтглас) или нет. Первые значительно менее проницаемы, чем вторые?

Если держать между разрядной трубкой и экраном руку то видны темные тени костей в слабых очертаниях тени самой руки».

Небывалой интенсивности исследования продолжались полтора месяца. Проводились они в условиях глубочайшей секретности. Единственным посвященным человеком была жена Рентгена, Анна, его верная помощница. Секретность была связана вовсе не с тем, что ученый боялся кражи «интеллектуальной собственности». Рентген был глубочайшим противником введения «прав на открытия». Он всю жизнь считал науку делом общечеловеческим и принципиально не оформлял патенты на свои открытия и изобретения. В том числе, кстати, и на Х-лучи. Просто все то, что он теперь наблюдал, было настолько невероятным, что он боялся, что коллеги поймут его неверно, если он не распишет новое явление во всех возможных подробностях.

Но и особо затягивать с рассказом об открытии он не хотел. Статья, начало которой вы прочитали чуть выше, была написана уже в середине декабря, а 28 числа она уже вышла в виде отдельной брошюры, экземпляры которой ученый разослал ведущим физикам мира. Тут же, в брошюре был напечатан и первый рентгеновский снимок кисти руки человека с явно выделяющимся кольцом на безымянном пальце. Человеком этим, как выяснилось позже, была Анна Берта.

Открытие немецкого ученого завоевало мир почти мгновенно. Первый медицинский рентгеновский снимок закрытого перелома кости руки американские ученые сделали уже 20-го января 1896-го года, менее чем через месяц после публикации. Новое открытие было настолько же простым, насколько и невероятным, тем более, что природу лучей разгадать пока никто не мог. Десятки и сотни лабораторий во всех концах света повторяли и перепроверяли эксперименты Рентгена, а журналы и газеты выдавали на-гора тысячи статей, одна круче другой. Дам пугали тем, что немецкий доктор изобрел прожектор, который показывает все, что есть под платьем. Мужчин – тем, что новый прибор может «видеть сквозь стены». На публичные лекции, в ходе которых демонстрировалось действие лучей, народ валил толпами. Джозеф Томсон, проводя в Кембридже опыты с Х-лучами, пришел к открытию электрона.

Экспериментировали с ними и другие великие физики, такие, как создатель первой в России физической школы Николай Лебедев и изобретатель радио Александр Попов .

Сам же Рентген, написав еще две посвященных лучам статьи, уже к 1897 году полностью к ним охладел, и переключился на другие проблемы. Его настолько утомляла внезапно обрушившаяся на него слава, что он теперь старался напротив всеми путями показать, что, в сущности, ничего такого особенного он не совершил. И в доказательство этого упорно отказывался от множества предлагаемых наград и почетных званий. Когда принц-регент Баварии наградил его орденом, дававшим право на дворянство, орден ученый, дабы не обидеть высокопоставленную особу, принял, а вот от дворянства отказался категорически, заявив, что он его еще не заслужил. Поэтому, конечно, шведская королевская академия, присуждая Рентгену в 1901 году первую в истории науки Нобелевскую премию в области физики «в знак признания необычайно важных заслуг перед наукой, выразившихся в открытии замечательных лучей, названных впоследствии в его честь», в определенной степени рисковала.

Ведь отказ от ее получения сильно повредил бы ее репутации. Но тут Вильгельм пошел навстречу научному сообществу, и премию принял с благодарностью. Однако, приехать лично на ее вручение он, сославшись на ужасную занятость, он категорически отказался, а нобелевскую речь вместо него сказал член Шведской академии наук К.Т. Одхнер . «Нет сомнения в том, - заявил он на церемонии, - сколь большого успеха достигнет физическая наука, когда эта неведомая раньше форма энергии будет достаточно исследована». Саму же премию, вместе со всеми причитающимися документами, ученому доставили по почте. Только не в Вюрцбург, а в Мюнхен, где он уже два года как руководил кафедрой физики.

Мюнхенский университет стал его последним местом работы.

И ведь нельзя сказать, что все то, что делал ученый было однозначно хорошо. Он, например, долгое время не верил в существование электрона, и даже запретил подчиненным и ученикам, в числе которых был и замечательный советский (тогда еще русский) физик Абрам Федорович Иоффе его упоминание. Долгое время он отказывался верить в волновую природу открытых им лучей. Однако во всех случаях он, в конце концов, признавал свои ошибки.

Он был совершенным бессребреником, готовым за идею отдать последний пиджак. Когда во время первой мировой войны правительство Германии призвало людей помочь государству кто чем может, он отдал все свои сбережения, включая и Нобелевскую премию.

В 1919 году после долгой болезни умерла его жена Анна. Вильгельм же продолжал работать в Мюнхенском университете. Только после того, как ему исполнилось 75 лет и он уже по закону не мог оставаться на должности, Рентген 1 апреля 1920 года согласился уйти в отставку.

10 февраля 1923 года, после длительной и тяжелой болезни, Вильгельм Конрад Рентген скончался в Мюнхене от рака кишечника. По завещанию его похоронили на Старом кладбище в Гиссене, где уже покоились его родители. Имущество он передал городу Вальдхайм (Верхняя Бавария), где у него был небольшой охотничий замок. Тут же, в завещании он велел душеприказчикам уничтожить все свои научные записи. Неизвестно, чем руководствовался ученый, когда вписывал в «духовную» этот пункт, но он был выполнен, поэтому до нас дошло не так много написанных им документов.

Первый памятник был поставлен Вильгельму Рентгену в Санкт-Петербурге перед зданием Центрального научно-исследовательского рентгенорадиологического института (сегодня - кафедра рентгенологии Санкт-Петербургского государственного медицинского университета им. академика И.П. Павлова) 29 января 1920 года. За три года до его смерти.

Вильгельм Конрад Рёнтген (1845-1923)

Помещенная в 1895 году в научном немецком журнале фотография кисти руки жены Вильгельма Рентгена, сделанная при помощи икс-лучей (x-ray, позже названных по имени их открывателя рентгеновскими), вызвала огромный интерес в научном мире. До Рентгена никто из физиков ничего подобного не делал. Эта фотография свидетельствовала, что состоялось проникновение в глубь человеческого организма без его физического вскрытия. Это был прорыв в медицине, в распознавании болезней. За открытие этих лучей Вильяму Рентгену в 1901 году была присуждена Нобелевская премия по физике.

Ректор физического института при университете старинного немецкого Вюрцбурга, профессор Вильгельм Рентген часто оставался в своей лаборатории допоздна. Он занимался исследованием природы катодных лучей в вакууме, используя при этом запаянную с двух концов трубку с электродами, которую изобрел еще английский физик Крукс. В тот день, 8 ноября 1895 года, профессор, как обычно, проводил эксперименты с катодным излучением и на всякий случай обернул вакуумную трубку плотной черной бумагой. Он вроде закрыл выход из нее всяких лучей, но едва включил ток, как тотчас напротив засветился экран, покрытый солями бария. Исследователь выключил ток — свечение прекратилось. Он отодвинул трубку от экрана подальше, снова включил ток, и экран снова засветился. Не зная, как назвать открытые им лучи, Рентген обозначил их как неизвестные — х-ray.

Рентген начал их исследовать и установил, что они не проходят сквозь свинец, но проходят сквозь многие другие непрозрачные материалы, они не отражаются и не преломляются. Но дальше перед ним предстала совершенно удивительная картина — поставив на пути луча свою ладонь, он увидел ее анатомическое изображение на экране. Странный свет проникал сквозь мягкие ткани и отображал кости. От этого перехватило дыхание. Что за чудо? О своем открытии Рентген написал статью, в качестве иллюстрации проходимости лучей сквозь тело поместил анатомическую фотографию кисти руки жены Анны. Результаты его экспериментов были высоко оценены физиками Европы, лучами заинтересовались и медики. Посыпались разные предложения, высказывались новые идеи.

Сам Рентген полагал, что ничего выдающегося не совершил. Он добился искомого результата и был доволен. Он почти прекратил работать над совершенствованием своей трубки. Но открытие шествовало по Европе. К ученому обращались представители промышленных фирм с предложениями купить права на изготовление и использование его прибора для практических целей, но Рентген категорически отказывался. Он был далек от коммерции и эти предложения даже не рассматривал…

Вильгельм Рентген появился на свет в семье торговца текстильными товарами, жившего недалеко от Дюссельдорфа. Интерес к технике и физике у него развился в Утрехтской технической школе в Голландии, затем во время учебы в Высшей технической школе в Цюрихе в Швейцарии. На способного студента обратил внимание известный в то время физик Август Кундт.

И когда Вильгельм закончил школу, он предложил юноше работать в его лаборатории. Когда Кундт перевелся в университет Вюрцбурга, он взял с собой молодого ученого. С 1872 года Кундт и Рентген вместе работали в Страсбургском университете. Получив там звание профессора, Рентген снова вернулся в Вюрцбург, где занял должность директора физического института при университете.

Рентген был лишен честолюбия. Он не любил публичности и даже о результатах своих экспериментов не любил рассказывать. Он полагал, что его удел — физическая лаборатория, где он проводил эксперименты, и студенческая аудитория, где он рассказывал о своих достижениях молодежи.

В 1899 году Рентген переехал в Мюнхен и оставался там до конца своих дней. В то время он не мог в полной мере оценить суть сделанного им открытия. Его эксперименты с использованием икс-лучей позволили в дальнейшем получить новые сведения о строении разных веществ. Сегодня почти все лечебные учреждения в мире оснащены рентгеновскими аппаратами , а в промышленности рентгеновские трубки определяют качество сварных швов на трубопроводах.

История рентгенографических исследований начинается в 1885 году. Именно тогда Вильгельму Рентгену впервые удалось зарегистрировать затемнение фотопластинок, произошедшее под воздействием излучения особого спектра. Тогда же ученый обнаружил, что при облучении какой-либо части тела человека на фотопластинке остается изображение скелета. Данное открытие послужило основой метода медицинской визуализации. До этого исследовать внутренние органы и ткани при жизни человека не представлялось возможным.

Открытие рентгеновского излучения

Открытие всей своей жизни Вильгельм Рентген сделал уже в зрелом возрасте. Имея обыкновение задерживаться допоздна в своей лаборатории, работавшей при физическом отделении Вюрцбургского университета, ученый заметил, что при подаче электроэнергии на катодную трубку, закрытую со всех сторон плотной черной бумагой, кристаллы платиноцианистого бария начинали светиться.


Вильгельм Конрад Рентген

Этот эффект заинтересовал Рентгена и он продолжил исследования, в результате которых было открыто икс-излучение. Физик установил, что источником этих особых лучей является место столкновения катодного излучения с преградой внутри трубки. Продолжая опыты, Рентген изобрел специальную конструкцию, оснащенную плоским анодом. Это обеспечивало интенсификацию потока икс-излучения. Работая с этим аппаратом, ученый описал свойства лучей, которые впоследствии получили название «рентгеновских»

Физические свойства икс-излучения

Благодаря исследованиям Рентгена были зафиксированы особые свойства икс-излучения. Так стало ясно, что оно способно проникать сквозь различные непрозрачные материалы, не отражаясь и не преломляясь при этом. Кроме того, излучение невозможно поляризовать, и оно не поддается дифракции. Отдельного внимания заслуживает то, что рентгеновские лучи вредны для человеческого организма. Ученый этого не знал, поэтому, скорее всего, его здоровье надломилось вследствие длительного воздействия открытого им излучения. Современная аппаратура позволяет эффективно защитить обследуемого от пагубного влияния рентгеновских лучей, но, тем не менее, рентгенографическое обследование не рекомендуется проходить чаще, чем 1 раз в год.

Рентгенография в медицине

Для применения открытого рентгеновского излучения была изобретена специальная аппаратура, самые различные модификации которой нашли применение практически во всех областях современной медицины. Следует отметить, что если мягкие ткани человеческого тела пропускают лучи, то кости и твердые материалы, по каким-либо причинам находящиеся в организме, их задерживают. И для определения состояния скелета и наличия в организме чужеродных тел было разработано отдельное направление - рентгеноскопия.


Открытие Вильгельма Рентгена получило достаточно широкое распространение уже к 1919 году. Благодаря его исследованиям стали появляться новые медицинские отрасли - рентгенология, рентгенодиагностика, рентгеноструктурный анализ и др. С помощью данных методик удалось спасти здоровье и жизнь сотен тысяч людей во всем мире. Поэтому, вне всякого сомнения, результаты работы Рентгена являются одним из самых великих достижений в истории человечества.

Рентгеновский аппарат - совокупность оборудования для получения и использования рентгеновского излучения. Используется в медицине (рентгенография, рентгеноскопия, рентгенотерапия), дефектоскопии. Рентгеновские аппараты особой конструкции применяются в рентгеноспектральном и рентгеноструктурном анализе.

8 ноября 1895 г. профессор Вюрцбургского университета (Германия) Вильгельм Рентген, пожелав жене спокойной ночи, спустился в свою лабораторию, чтобы еще немного поработать.

Когда настенные часы пробили одиннадцать, ученый погасил лампу и вдруг увидел, как на столе разлилось призрачное зеленоватое сияние. Оно исходило от стеклянной банки, в которой находились кристаллы платиносинеродистого бария. Способность этого вещества флюоресцировать под действием солнечных лучей была давно известна. Но обычно в темноте свечение прекращалось.

Рентген нашел источник излучения. Им оказалась невыключенная изза невнимательности круксова трубка, находившаяся в полутора метрах от банки с солью. Трубка находилась под плотным картонным колпаком без щелей.

Круксова трубка была изобретена примерно за 40 лет до наблюдения Рентгена. Она представляла собой электровакуумную трубкуисточник, как тогда говорили, "катодных лучей". Эти лучи, ударяясь о стеклянную стенку лампы, тормозились и давали на ней световое пятно, но вырваться за пределы лампы не могли.

Заметив сияние, Рентген остался в лаборатории и приступил к методическому изучению неизвестной радиации. Он устанавливал на разных расстояниях от трубки экран, покрытый бариевой солью. Тот мерцал даже на расстоянии двух метров от трубки. Неизвестные лучи, или, как Рентген их назвал Хлучи, проникали через все преграды, которые оказались под рукой ученого: книгу, доску, эбонитовую пластинку, оловянную фольгу и даже неизвестно откуда взявшуюся колоду карт. Все материалы, до того считавшиеся непрозрачными, стали для лучей неизвестного происхождения проникаемыми.

Рентген начал складывать стопку из листов станиоля: два слоя, три, десять, двадцать, тридцать. Экран постепенно начал темнеть и наконец стал абсолютно черным. Толстый том в тысячу страниц не дал такого эффекта. Отсюда профессор сделал вывод, что проницаемость предмета зависит не столько от толщины, сколько от материала. Когда ученый просветил шкатулку с набором гирь, то увидел, что силуэты металлических гирь были видны гораздо лучше, чем слабая тень деревянного футляра. Потом, для сравнения, он приказал принести свое двуствольное ружье.

Затем Рентген увидел жуткое зрелище: двигающиеся тени живого скелета. Оказалось, что кости руки менее прозрачны для Хлучей, чем окружающие их мягкие ткани.

Исследователь изучал открытое им излучение на протяжении 50 суток. Его жена, не выдержавшая молчаливого добровольного затворничества мужа, разрыдалась, и, чтобы ее успокоить, а заодно продемонстрировать свое изобретение близкому человеку, Рентген делает рентгеновский снимок кисти супруги. На нем были видны темные силуэты косточек, а на одной из фаланг черное пятно обручального кольца.

Лишь спустя семь недель после начала добровольного затворничества, 28 декабря 1895 г., Рентген оправил в Физикомедицинское общество Вюрцбургского университета свою 30страничную рукопись "О новом типе лучей", сделав приписку: "Предварительное сообщение".


Рентгеновская установка для экспериментов с Х-лучами. Пример простейшего рентгеновского аппарата. Состоит из источника высокого напряжения (катушка Румкорфа) и рентгеновской трубки (трубка Крукса). Изображение регистрируется на фотопластинку

Первая работа, посвященная великому открытию, окажется потом бессмертной: в ней ничего не будет ни опровергнуто, ни дополнено в течение многих лет. Информация об Хлучах, облетевшая в первую неделю 1896 г. весь свет, потрясла мир. Новое излучение позже было в честь первооткрывателя названо "рентгеновским".

Свою рукопись Рентген направил и по другим адресам, в частности своему давнему коллеге профессору Венского университета Ф. Экснеру. Тот, прочитав рукопись, сразу оценил ее по достоинству и немедленно ознакомил с ней сотрудников. Среди них оказался ассистент Э. Лехер, сын редактора венской газеты "Нойе фрайе прессе". Он попросил у Экснера текст на ночь, отнес его своему отцу и убедил поставить срочно в номер важную научную новость.

Ее дали на первой полосе, для чего пришлось даже приостановить типографские машины. Утром 3 января 1896 г. Вена узнала о сенсации. Статью перепечатали другие издания. Когда вышел научный журнал с оригинальной статьей Рентгена, номер расхватали за один день.

Сразу нашлись и претенденты на приоритет нового открытия. Рентгена обвиняли даже в плагиате. Среди кандидатов на первенство оказался и профессор Ф. Ленард, пытавшийся назвать лучи своим именем.

Оказалось, что первая рентгенограмма была действительно сделана в США еще в 1890 г. У американцев было больше прав на приоритет в открытии, чем у того же Ленарда, проводившего свои опыты с круксовой трубкой позже. Но профессор Гуд спид в 1896 г. просто попросил помнить, что первый снимок катодными лучами был сделан в лаборатории Пенсильванского университета. Ведь истинная природа этих лучей была установлена лишь Рентгеном.

Всемирная слава, нежданно свалившаяся на доселе безвестного провинциального ученого, привела его на первых порах в растерянность. Он стал избегать не только репортеров, но даже ученых. Профессор категорически отверг домогательства бизнесменов, отказавшись от участия в эксплуатации своего открытия, от привилегий, лицензий, патентов на свои изобретения, на усовершенствованные им генераторы Xлучей. Отсутствие монополии на выпуск рентгеновской техники привело к ее бурному развитию во всем мире.

Ученого обвиняли в отсутствии патриотизма. На предложение Берлинского акционерного электротехнического общества, предлагавшего большие деньги и работу в прекрасно оборудованных лабораториях, Рентген ответил: "Мое изобретение принадлежит всему человечеству".


Оперативный стол М. Сегюи для рентгеноскопии и фотографирования

После ошеломляющего успеха своего открытия Рентген вновь удалился в добровольное заключение в свою лабораторию. Он сделал передышку лишь после того, как 9 марта 1896 г. завершил вторую научную статью о новооткрытой радиации. Третья, заключительная – "Дальнейшие наблюдения за свойствами Хлучей" – была сдана в печать 10 марта 1897 года.

В 1904 г. англичанин Ч. Баркла экспериментально подтвердил теоретическую догадку своего соотечественника Дж. Стокса, что рентгеновские лучи имеют электромагнитную природу. Область рентгеновского излучения на спектре занимает область между ультрафиолетовым и гаммаизлучением. По одной классификации это диапазон от 10~5 до 10"12 сантиметра, по другой – от 10~6 до 10"10 сантиметра.

Изобретение немецкого ученого вызвало в мире неожиданные реакции. Так, в 1896 г. депутат американского штата НьюДжерси Рид предложил законопроект, запрещавший применение Хлучей в театральных биноклях, дабы они не могли проникнуть не только через одежду, но и через плоть в душу. А пресса в Европе и Америке предупреждала об опасности "мозговой фотографии", позволяющей читать самые потаенные чужие мысли.

Особый отклик у читателей нашла информация о том, что при помощи рентгеновских лучей можно запечатлевать на извилинах коры головного мозга текст или рисунок для запоминания. Хлучам приписывали свойство возвращать юность старикам и жизнь умирающим. А также превращать свинец в золото.

Но, с другой стороны, только за "рентгеновский" 1896 год вышло более тысячи научных работ и почти 50 книг по применению Х-лучей в медицине. Еще в феврале 1896 г. В. Тонков представил в Петербургское антропологическое общество доклад о применении Х-лучей для изучении скелета. Так были заложены основы новой дисциплины – рентгеноанатомии. Сейчас она стала фундаментом современной диагностики. Чуть позже А. Яновский стал применять ее для систематического обследования пациентов. В боевой обстановке рентгеноскопию применил русский врач В. Кравченко, оборудовавший на крейсере "Аврора" рентгеновский кабинет. В Цусимском сражении он обследовал раненых матросов, находя и извлекая из тела осколки.

Рентгенология помогала диагностировать на ранних стадиях рак и туберкулез. Рентгеновское излучение в больших дозах вредно для организма человека. Но, тем не менее, оно применяется для борьбы со злокачественными опухолями.

В начале XX в. для изготовления рентгенограммы требовалось облучение в течение 1,5–2 часов изза несовершенства оборудования и малой чувствительности пленки. Затем для съемки стали использовать усиливающие экраны, между которыми располагалась пленка. Это позволило без увеличения чувствительности пленки сократить время экспозиции в десятки раз. Благодаря этому рентгенография по разрешающей способности превзошла рентгеноскопию.

Поскольку пленка для рентгеновских снимков требовала большого количества серебра, рентгенографию постепенно стала вытеснять флюорография – фотосъемка с флюоресцирующего экрана. Флюорограмма имеет лишь один светочувствительный слой и по площади в 10–20 раз меньше стандартной рентгенограммы, что дает большую экономию серебра при снижении лучевых нагрузок. Изображение увеличивается с помощью проекторов. Компактная флюорографическая камера, установленная на электронно-оптический усилитель стационарного аппарата, позволяет получать многократное изображение с коротким интервалом по заданной программе. Так можно регистрировать быстротекущие процессы. В частности, этот метод применяется для контроля продвижения специальной массы, содержащей барий (хорошо видимый в рентгеновских лучах) по желудочно-кишечному тракту человека.

Для экономии пленки применяется специальная селеновая пластина, накапливающая электростатический заряд. Под воздействием рентгеновского излучения она теряет заряд, сохраняя его лишь на затемненных участках. В результате на поверхности пластины возникает скрытое изображение. Его проявляют, опыляя тонкодисперсным красящим порошком, точно воспроизводящим распределение света и теней. Одна селеновая пластина выдерживает 2–3 тысячи процедур, сберегая до 3 кг серебра. Изображение не уступает по качеству рентгенограмме.


Устройство рентгенодиагностического аппарата: Vc - питающее напряжение; Va - напряжение для исследования; РН - регулятор напряжения; РВ - реле времени; ГУ - генераторное устройство, включающее выпрямители; РТ - рентгеновская трубка; Ф - фильтр; Д - диафрагма; О - объект исследования (пациент); Р - отсеивающий растр; РЭ - камера экспонометра рентгеновского излучения; П - кассета с рентгенографической пленкой и усиливающими экранами; УРИ - усилитель рентгеновского изображения; ТТ - телевизионная передающая трубка; ФК - фотокамера; ВКУ - видеоконтрольное устройство; ФЭУ - фотоэлектронный умножитель; СЯ - стабилизатор яркости; БЭ - блок обработки сигнала экспонометра; БН - блок управления накалом рентгеновской трубки с вычислительным устройством; ТН - трансформатор накала; S - оптическая плотность почернения фотоматериала; В - яркость свечения флюоресцентного экрана; пунктиром обозначен рабочий пучок рентгеновского излучения; РТ - рентгеновская трубка; Ф - фильтр; Д - диафрагма; О - объект исследования (пациент); Р - отсеивающий растр; РЭ - камера экспонометра рентгеновского излучения; П - кассета с рентгенографической пленкой и усиливающими экранами; УРИ - усилитель рентгеновского изображения; ТТ - телевизионная передающая трубка; ФК - фотокамера; ВКУ - видеоконтрольное устройство; ФЭУ - фотоэлектронный умножитель; СЯ - стабилизатор яркости; БЭ - блок обработки сигнала экспонометра; БН - блок управления накалом рентгеновской трубки с вычислительным устройством; ТН - трансформатор накала; S - оптическая плотность почернения фотоматериала; В - яркость свечения флюоресцентного экрана; пунктиром обозначен рабочий пучок рентгеновского излучения

Помимо черно-белой, существует цветная рентгенография. Сперва цветную рентгенограмму получали, трижды снимая объект лучами неодинаковой жесткости. Так получали три негатива, которые окрашивали синим, зеленым и красным цветами, после чего их совмещали и делали отпечаток на цветной пленке.

Позже, чтобы уменьшить дозу облучения, применили метод тоноразделения. Здесь была нужна однократная экспозиция. На снимке выделяли различные зоны плотности и на каждую изготавливали свою копию рентгенограммы. Затем их совмещали на цветной пленке, получая условно окрашенное изображение.

Обычный рентгеновский снимок дает лишь плоское изображение. Часто это не позволяет определить, например, точное местоположение инородного тела в организме, а несколько рентгенограмм, полученных с разных позиций, дают лишь приближенное представление об этом. Для превращения плоского изображения в объемное применяется стереоренгенография. С этой целью изготовляют два снимка, составляющие стереопару: на них изображена одна и та же картина, но запечатленная так, как ее видят правый и левый глаз. При рассматривании обоих негативов в специальном аппарате, они совмещаются в один, образуя глубину.

При стереорентгеноскопии пациента просвечивают двумя трубками, включающимися поочередно со скоростью 50 раз в секунду каждая. Обе серии импульсов поступают на электронно-оптический преобразователь, откуда они попеременно, синхронно с работой трубок снимаются двумя телевизионными системами. Обе картины совмещаются в одну с помощью поляризационных очков.

Глубину залегания, пространственную структуру, форму и величину патологических образований оценивают и более простыми средствами, например с помощью томографии – послойных снимков. При проведении томографии больной лежит на столе. Над ним движется рентгеновская рубка, а под ним в противоположном направлении перемещается пленка. Резкими оказываются только те элементы, которые находятся на оси вращения рычага, соединяющего трубку и пленку. Проводится серия снимков, отображающих тонкие слои толщиной в несколько миллиметров. По ним легко установить, где находится чужеродное тело или болезненный очаг.

С появлением электронно-вычислительных машин и компьютеров стало возможным программное управление всей процедурой рентгенодиагностики – от съемки до получения снимков.

Спектр применения рентгеновских лучей широк.

В 20–30-е годы прошлого века появились радиационная генетика и селекция, позволяющие получать стойкие варианты микробов с нужными свойствами, сорта растений с повышенной урожайностью. Воздействуя на организмы проникающей радиацией и затем, проводя отбор, ученые проводят ускоренную биологическую эволюцию.

В 1912 г. в Мюнхене М. фон Лауэ выдвинул идею при помощи Хлучей исследовать внутреннее строение кристалла. Его идея вызвала споры среди коллег, и, чтобы разрешить их, В. Фридрих поставил на пути лучей кристалл и рядом, сбоку, фотопластинку для их регистрации, когда они отклонятся под прямым углом, как при обычной дифракции. Результатов не было до тех пор, пока П. Книппинг не поставил пластинку не сбоку, а за кристаллом. На ней появился симметричный узор из темных пятен.

Так появился рентгеноструктурный анализ. Сначала его применение ограничивалось получением лауэграмм – снимков, отражавших строение монокристалла. Они позволяли обнаруживать дефекты решетки, внутренние напряжения и т. п. В 1916 г. П. Дебай и П. Шеррер приспособили этот метод для изучения поликристаллических материалов – порошков, сплавов. Такие снимки назвали дебаеграммы. По ним определяют строение и состав образцов, размеры и ориентацию включений.

В 1930-е годы английские ученые Д. Бернал и Д. Кроуфут-Ходжкин осуществили рентгеноструктурный анализ белков. Съемка обнаружила у них внутреннюю упорядоченность. Благодаря такому анализу стала возможной пространственная модель ДНК, которую предложили в 1953 г. Д. Уотсон и Ф. Крик. Для этого они воспользовались дифракционными картинами ДНК, полученными М. Уилкинсом.

Рентгеновские лучи применяют для контроля качества различных материалов и изделий. Они позволяют увидеть внутренние дефекты – трещины, раковины, непровары, включения. Этот метод называется рентгенодефектоскопия.

Х-лучи позволяют искусствоведам заглядывать под верхний слой картин, иногда помогая обнаруживать скрытые веками изображения. Так, при изучении картины Рембрандта "Даная", был открыт первоначальный вариант полотна, позже переделанный автором. Подобное исследования прошли многие живописные произведения в разных картинных галереях.


Интроскоп для досмотр багажа

Рентгеновское излучение применяется в интроскопах – устройствах, которыми сейчас оборудованы таможни, контрольно-пропускные пункты. Они позволяют обнаруживать спрятанную взрывчатку, оружие и наркотики.

100 знаменитых ученых Скляренко Валентина Марковна

РЕНТГЕН ВИЛЬГЕЛЬМ КОНРАД (1845 г. – 1923 г.)

РЕНТГЕН ВИЛЬГЕЛЬМ КОНРАД

(1845 г. – 1923 г.)

Вильгельма Рентгена недаром образно называли человеком, который «просветил» мир, так как его великое открытие сыграло чрезвычайно существенную роль в создании современных представлений о строении и свойствах вещества. Имя физика-экспериментатора увековечено не только в X-лучах, но и в некоторых других физических терминах, связанных с этим излучением: рентген – международная единица дозы ионизирующего излучения; снимок, сделанный рентгеновским аппаратом, известен как рентгенограмма; область радиологической медицины, в которой используются рентгеновские лучи для диагностики и лечения заболеваний, называется рентгенологией. Интересно, что автор изобретения, будучи убежденным сторонником классической физики, относился к своему открытию довольно скептически. Нет, он прекрасно понимал его научно-техническое значение, но всю шумиху, поднятую вокруг Х-лучей, считал не более чем погоней за сенсацией. Такой уж был характер у великого экспериментатора.

Вильгельм родился 27 марта 1845 г. в прусском городке Леннеп близ Дюссельдорфа и был единственным ребенком в семье состоятельного торговца и владельца суконной фабрики Фридриха Рентгена и его жены Шарлотты Фровейн. Когда мальчику было три года, семья переехала в Голландию, на родину матери. Здесь он сначала посещал частную школу в Апелдорне, потом техническое училище в Утрехте – родители намеревались передать ему сукновальное дело. Но в 1862 г. его исключили из училища за отказ донести на своего товарища. Вилли попытался сдать экзамены на аттестат зрелости экстерном в другом учебном заведении, но безуспешно, и поэтому в 1865 г. он отправился в Цюрих изучать механику в Федеральный технологический институт (политехникум). Здесь для поступления не требовался аттестат зрелости, а благодаря хорошим текущим отметкам в Утрехтском училище юноша был даже освобожден от вступительного экзамена. Три года Рентген изучал машиностроение, но особый интерес проявил к прикладной математике и технической физике. По окончании научно-инженерного курса по совету знаменитого физика А. Кундта он занялся экспериментальной физикой. И уже в 1869 г. 24-летний Вильгельм получил докторскую степень, опубликовав статью по теории газов. Сразу же после защиты диссертации Рентген женился на Берте Людвиг, дочери хозяина студенческой закусочной, с которым долгое время был дружен.

В 1874 г. в качестве ассистента он последовал за своим учителем Кундтом в Страсбургский университет и начал научно-практическую деятельность. Спустя год он сдал экзамены на право преподавания физики и математики и стал профессором Высшей сельскохозяйственной школы в Гогенгейме. Через год вернулся в Страсбург, а в 1879 г. по рекомендации Г. Гельмгольца получил место профессора в Гессенском университете, в котором работал до 1888 г., отказавшись от предложений занять кафедру физики в университетах Иены и Утрехта.

Здесь Рентген, занимаясь в основном вопросами электромагнетизма и оптики, сделал очень важное открытие: основываясь на электродинамике Фарадея – Максвелла, обнаружил магнитное поле движущегося заряда (так называемый «рентгенов ток»). Среди других работ этого периода – исследование свойств жидкостей, газов, электромагнитных явлений, открытие взаимосвязи электрических и оптических явлений в кристаллах кварца.

В 1888 г. Вильгельм был приглашен в университет баварского города Вюрцбурга, расположенного на юге Германии, а спустя шесть лет стал его ректором. В стенах этого университета 8 ноября 1895 г. он сделал открытие, которое принесло ему всемирную известность. Именно тогда 49-летний профессор приступил к экспериментальным исследованиям электрического разряда в стеклянных вакуумных трубках. Около полуночи 8 ноября 1895 г. ученый, уже почувствовав усталость, собрался уходить, но, окинув последним взглядом лабораторию, вдруг заметил в темноте какое-то светящееся пятно. Оказывается, светился экран из синеродистого бария. Почему он светится? Рентген еще раз посмотрел на катодную трубку и упрекнул себя: забыл выключить. Нащупав рубильник, ученый обесточил ее и свечение экрана исчезло; включил – вновь появилось… Значит, свечение вызывает катодная трубка! Оправившись от минутного изумления и забыв об усталости, Рентген тут же стал исследовать обнаруженное явление и новые лучи, названные им Х-лучами (как известно, в математике через «х» обозначается неизвестная величина).

Оставив футляр на трубке, чтобы катодные лучи были закрыты, он с экраном в руках начал передвигаться по лаборатории. Тут же выяснилось, что полтора-два метра для этих неизвестных лучей не преграда, они легко проникают через книгу, стекло, станиоль… А когда рука ученого оказалась на пути неизвестных лучей, он увидел на экране силуэт ее костей! Фантастично и жутковато! Рентген заторопился: необходимо было закрепить увиденное на снимке. Так начался новый эксперимент, который показал, что лучи засвечивают фотопластинку и имеют определенное направление. Только утром обессиленный ученый ушел домой. «Великий жребий», который ему выпал, как позднее сказал Рентген, он поспешил подкрепить «безупречными результатами исследований». На пятьдесят дней и ночей было забыто все: семья, здоровье, ученики и студенты… Он никого не посвящал в свою работу до тех пор, пока не разобрался с их отражением, поглощением, способностью ионизировать воздух. Рентген велел приносить себе пищу в университет и поставить там кровать, чтобы избежать сколько-нибудь значительных перерывов в работе. Первым человеком, кому он продемонстрировал свое открытие, была его жена Берта. Именно снимок ее кисти, с обручальным кольцом на пальце, ученый приложил к статье «О новом роде лучей», которую он 28 декабря 1895 г. направил председателю Физико-медицинского общества университета и известил о своем достижении императора Вильгельма II.

Уже через 10 дней на заседании Научного физико-медицинского общества было рассмотрено сообщение об открытии Рентгена. Он попросил разрешения у советника фон Колликера «просветить X-лучами» его руку. Сразу же была сделана фотография, и все присутствующие смогли воочию убедиться в «волшебном» действии «невидимых лучей». После этого «подопытный» предложил назвать эти лучи именем Рентгена.

Открытие привлекло к себе всеобщее внимание: брошюра с докладом за несколько дней была издана пять раз. Ее сразу же перевели на английский, французский, итальянский и русский языки, однако природа таинственных лучей была объяснена лишь в 1912 г. физиками Лауэ, Фридрихом и Книппингом. При всем колоссальном интересе к этому явлению понадобилось около 10 лет, чтобы в знаниях об X-лучах добавилось что-то новое: английский физик Чарлз Баркла доказал их волновую природу и открыл характеристическое (определенной длины волны) рентгеновское излучение. Еще через 6 лет Макс фон Лауэ разработал теорию интерференции X-лучей на кристаллах, предложив использовать кристаллы в качестве дифракционных решеток. В том же 1912 г. эта теория получила экспериментальное подтверждение в опытах В. Фридриха и П. Книппинга. Научное значение открытия Рентгена раскрывалось постепенно, что подтверждается присуждением семи Нобелевских премий за работы в области рентгеноскопии. В 1896 г. доктор Г. Л. Смит первым получил рентгеновское изображение в медицине. Месяц спустя американские физики использовали рентгеновские лучи в диагностических целях, и стало очевидно, что проводить определенные операции необходимо только после предварительного просмотра рентгеновского снимка. Тогда же К. Мюллер начал производство рентгеновских трубок на небольшом предприятии в Гамбурге для их использования в близлежащей больнице. Его фабрика стала основой нынешней, самой передовой в мире фабрики по производству рентгеновских трубок, принадлежащей компании Philips. Кроме того, рентгеновским лучам обязаны такие великие открытия, как структура молекул гемоглобина, дезоксирибонуклеиновой кислоты (ДНК) и белков, ответственных за фотосинтез (Нобелевские премии 1962 и 1988 гг.).

Революционное открытие немецкого физика быстро, даже по сегодняшним меркам, приобрело широкую известность. Весь январь 1896 г. прошел под лозунгом «Сенсационное открытие», а телеграфом из Лондона на весь мир передавалось: «Даже шум военной тревоги не в силах был бы отвлечь внимание от замечательного триумфа науки, весть о котором докатилась до нас из Вены. Сообщается, что профессор Вюрцбургского университета Роутген открыл свет, который проникает при фотографировании через дерево, мясо и большинство других органических веществ. Профессору удалось сфотографировать металлические гири в закрытой деревянной коробке, а также человеческую руку, причем видны лишь кости, в то время как мясо невидимо». Дальше последовала лавина публикаций: только за один год свыше тысячи статей по новым лучам. Во всех европейских столицах читались публичные лекции об открытии Рентгена и демонстрировались опыты. Не обходилось и без курьезов. Американские блюстители нравов предлагали запретить рентгеновские лучи на том основании, что, дескать, «будучи вставленными в театральные бинокли, они позволят зрителям полностью раздевать появляющихся на сцене актрис». А одна из заокеанских фирм предлагала покупать шляпы ее производства, которые, «прикрывая лоб, не позволяют читать ваши мысли при помощи икс-лучей».

А через год после открытия Рентгеном X-лучей он получил письмо от английского моряка, у которого со времен войны в груди застряла пуля. Тот попросил, «если это возможно, выслать немного лучей в конверте, доктора найдут пулю и я вышлю Вам лучи назад». И хотя у Рентгена был легкий шок, он ответил с присущим ему юмором: «В данный момент я не располагаю таким количеством лучей. Но если Вам не трудно, вышлите мне свою грудную клетку, я найду пулю и отошлю Вам грудную клетку назад».

В 1899 г. Рентген стал профессором физики и директором Физического института при Мюнхенском университете. Профессором этого университета он оставался до 1920 г. В 1901 г. ученый узнал, что он стал первым лауреатом Нобелевской премии по физике. Интересно, что он был единственным лауреатом, кто не читал традиционной Нобелевской лекции. Рентген вообще мало участвовал в публичных мероприятиях, никогда не принимал участия в ежегодных съездах физиков, естествоиспытателей и врачей, отвергал всякие чествования со стороны власть имущих. Помимо Нобелевской премии ученый был удостоен медали Румфорда Лондонского королевского общества, золотой медали Барнарда за выдающиеся заслуги перед наукой Колумбийского университета и состоял почетным членом и членом-корреспондентом научных обществ многих стран.

На протяжении десятилетий в научном мире дискутировался вопрос: случайно или закономерно открытие Рентгена? Знавшие гениального физика ученые утверждали, что кропотливость и наблюдательность исследователя не могли не привести к открытию, ведь он считался лучшим экспериментатором своего времени. И если в самом факте открытия был элемент случайности, то в исследовании сути предмета с Рентгеном никто сравниться не мог. Академик А. Ф. Иоффе, работавший его ассистентом на протяжении трех лет, говорил: «Я думаю, что совершенно закономерно, что из многих исследователей, в течение 40 лет работавших среди рентгеновых лучей, их заметил только один Рентген, исключительно тонкий и точный экспериментатор-наблюдатель в самом высоком смысле этого слова».

По свидетельствам современников, Рентген был человеком замкнутым и суровым. Он не участвовал в съездах ученых, не принял предложения, стать членом Прусской академии и президентом Палаты мер и весов. Отказывался от всех присуждаемых ему премий (кроме Нобелевской), многих престижных наград. Прекрасно понимая значение своего открытия, он решительно отверг предложение Берлинского электрического общества продать за большую сумму право на использование патентов будущих его открытий – ему была чужда мысль об их торгашеском использовании. Рентген считал, что результаты, полученные в научной лаборатории, могут и должны использоваться всеми. Он продолжал работать, не допуская для себя никаких послаблений.

Академик Иоффе вспоминал: «Редко можно было видеть улыбку на лице Рентгена. Но я видел, с какой трогательной заботливостью он относился к своей больной жене, как разглаживались его морщины, когда его увлекал научный вопрос, когда мы ходили на лыжах или слетали на салазках с гор… Рентген был человеком аскетической скромности… В Мюнхене, живя с женой и ее осиротевшей племянницей, Рентген вел скромный, замкнутый образ жизни. Точно в 8 часов начинал работать в институте и в 6 часов вечера возвращался домой; как и все, имел двухчасовой отдых от 12 до 14… Не могу также не вспомнить о деликатности, с которой Рентген устраивал мой отдых в Швейцарии. Он приглашал меня на свой счет в качестве ассистента в тот швейцарский отель, где жил сам, якобы для обсуждения нашей совместной работы…» И в тоже время Рентген не допускал никаких компромиссов с совестью, не отступал от своих убеждений даже в отношениях с императором Вильгельмом. Когда тот в мюнхенском Музее науки и техники взялся было объяснять Рентгену элементарные вещи, ученый резко его отчитал, после чего сразу и навсегда сделался «врагом Германии».

И тем не менее, во время Первой мировой войны ученый первым в ответ на призыв германского правительства передал свои валютные ценности, включая Нобелевскую премию, в государственный фонд. А в 1917 г., когда в Германии был голод, Рентген не захотел никакой материальной поддержки от физиков других стран. У него начались голодные обмороки, но даже в больнице он отказался от привилегированных пайков. В 1920 г. Рентген ушел в отставку со своих постов в Мюнхене, вскоре после смерти жены. Знаменитый ученый-экспериментатор умер 10 февраля 1923 г. от рака толстой кишки.

Открытия радио, радиоактивности и рентгеновского излучения «спрессованны» во времени примерно в десять месяцев. Они стали «спусковым крючком» для развития экспериментальной физики XX в., и память о первооткрывателях этих явлений – А. С. Попове, А. Беккереле и В. Рентгене – хранится благодарными потомками. Об этом, например, свидетельствует деятельность музея-лаборатории в Вюрцбурге, в которой Рентген сделал свое открытие. В исторической лаборатории до сих пор все сохраняется без изменений, и она вместе с прилегающими помещениями образует мемориал.

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Тевтонский орден [Крах крестового нашествия на Русь] автора Вартберг Герман

ГОСУДАРИ-КОЛОНИЗАТОРЫ ПРУССИИ ВЕЛИКИЙ КУРФЮРСТ ФРИДРИХ-ВИЛЬГЕЛЬМ, КОРОЛИ ФРИДРИХ I И ФРИДРИХ-ВИЛЬГЕЛЬМ I. Состояние владений Великого Курфюрста после тридцатилетней войны. - Голландские и немецкие колонисты.Никогда ни одна война не разоряла так страну, как

Из книги Евреи в КГБ автора Абрамов Вадим

3. Документы из «Обзора политико-экономического состояния СССР за апрель-май 1923 г. 16.VII.1923 г.» НАЦИОНАЛИСТИЧЕСКИЕ ПАРТИИ И ГРУППИРОВКИУкраинская коммунистическая партия.Прикрываясь коммунистическим флагом, на Украине ведет антисоветскую работу УКП, распространяющая

Из книги Французская волчица - королева Англии. Изабелла автора Уир Элисон

1845 Догерти: «Изабелла».

Из книги История города Рима в Средние века автора Грегоровиус Фердинанд

4. Сыновья Фридриха II. - Конрад IV. - Возвращение папы в Италию. - Тамошние дела. - Положение Манфреда как наместника Конрада. - Конрад IV является в Италию и вступает во владение Сицилийским королевством. - Иннокентии IV предлагает инвеституру его сначала Карлу Анжуйскому,

Из книги Русские учёные и изобретатели автора Артемов Владислав Владимирович

Илья Ильич Мечников (1845–1916)

Из книги История человечества. Запад автора Згурская Мария Павловна

Рентген Вильгельм Конрад (Род. в 184 г. – ум. в 1923 г.) Выдающийся немецкий физик-экспериментатор, открывший и исследовавший свойства рентгеновских лучей, названных им X-лучами. Автор работ по оптическим и электрическим явлениям в кристаллах, электромагнетизму,

Из книги Хронология российской истории. Россия и мир автора Анисимов Евгений Викторович

1845–1849 Великий голод в Ирландии Это бедствие было вызвано неурожаем картофеля – основного продукта питания большинства ирландцев. Под ним была занята треть пахотных земель, и на большинстве из них сидели бедные арендаторы. Неурожаи картофеля случались и раньше, но в

1845 Намсараева, 2003.

Из книги Зодчие Москвы XV – XIX вв. Книга 1 автора Яралов Ю. С.

Е. А. Белецкая, 3. К. Покровская Д. Жилярди (1785-1845) Дементий Иванович (Доменико) Жилярди принадлежит к числу ведущих архитекторов Москвы первой трети XIX столетия. Швейцарец по месту рождения, итальянец по национальности, он всю свою насыщенную, но короткую творческую жизнь

автора Шишкова Мария Павловна

АЛЕКСАНДРА НИКОЛАЕВНА МОЛАС (1845–1929) Меццо-сопрано Александра Николаевна Молас (урождённая Пургольд) (1845–1929) - сестра Н.Н. Римской-Корсаковой. Она обучалась пению у Даргомыжского, обладала голосом большого диапазона."Выразительность пения и

Из книги С.Я. Лемешев и духовная культура Тверского края автора Шишкова Мария Павловна

НАТАЛЬЯ АЛЕКСАНДРОВНА ИРЕЦКАЯ (1845–1922) Из класса Ниссен-Саломан вышла лирико-колоратурное сопрано Наталья Александровна Ирецкая (1845–1922), камерная певица и замечательный педагог. По словам Ц. Кюи, она была "выдающейся исполнительницей романсов", "легко справлялась даже с

Из книги С.Я. Лемешев и духовная культура Тверского края автора Шишкова Мария Павловна

БОГОМИР БОГОМИРОВИЧ КОРСОВ (1845–1921) Драматический баритон Богомир Богомирович Корсов - это сценический псевдоним Готфрида Готфридовича Геринга (1845–1921). На сцене Мариинского театра Корсов дебютировал в партии Графа ди Луна ("Трубадур" Верди) в 1869 году. Представитель

Из книги Популярная история - от электричества до телевидения автора Кучин Владимир