Геохронологическая история земли. Геологические периоды в хронологическом порядке

Не следует отождествлять с единицей времени, принятой в нашем летосчислении: это совсем не сто лет, а тот неопределенный промежуток времени, в течение которого происходило отложение в пластах органических остатков определенных видов животных и растений, (подробнее: ). Отложения в пластах Земли.

Геологические подразделения

История Земли для удобства ее изучения разделяется на крупные промежутки времени:
  • эти промежутки называются эрами;
  • эры подразделяются на периоды;
  • периоды на эпохи;
  • эпохи - на века .
Толща пород, отложившаяся в Земле:
  • в течение эры, называется группой ;
  • периоду соответствует система отложений ;
  • эпохе - отдел ;
  • веку - ярус .

Последовательность геологических подразделений по времени передается следующей сводной таблицей:

Эра (группы) Периоды (системы) Средняя продолжительность периодов (в млн. лет)

Кайнозойская (кайнозой) -

77 миллионов лет

Четвертичный 1
Верхнетретичный (неоген) 24
Нижнетретичный (палеоген) 45
Мезозойская (мезозой) - 120 миллионов лет Меловой (мел) 40
Юрский (юра) 40
Триасовый (триас) 35
Палеозойская (палеозой)- 325 миллионов лет Пермский (пермь) 40
Каменноугольный (карбон) 50
Девонский (девон) 35
Силурийский (силур) 35
Ордовикский (ордовик) 85
Кембрийский (кембрий) 80
Протерозойская эра (протерозой) Археозойская эра (археозой) Докембрий 700 1500
В названиях эр часто встречаются древнегреческие слова: «архе» - начало; «зое» - жизнь; «протерос» - первый; «паляйос»-древний; «мезос» - средний; «кайнос»- новый.
  • Археозойская эра, - эра древнейшая, начало жизни;
  • протерозойская - эра первичной жизни;
  • палеозойская - древней жизни;
  • мезозойская - средней по времени жизни;
  • кайнозойская - новой жизни.
Археозойская и протерозойская эры объединяются в один период - докембрий, очень длительный по времени период, предшествующий кембрийскому, или кембрию. Наряду с полными названиями эр общеупотребительны также и краткие названия:
  • археозой,
  • протерозой,
  • палеозой,
  • мезозой,
  • кайнозой.
Происхождение названий геологических периодов (систем) весьма различно. Самые поздние во времени периоды - четвертичный и третичный - сохранили свои названия от деления в начале XIX века всей истории Земли на три эры:
  • первичную (палеозой),
  • вторичную (мезозой),
  • третичную (кайнозой).
Затем была выделена еще и четвертичная (современная эра), однако ввиду незначительной продолжительности во времени двух последних эр по сравнению с предыдущими они впоследствии были слиты в одну кайнозойскую эру, первоначальные же их обозначения сохранились за названием периодов. Верхнетретичный период, он же - неоген (по-гречески «неос» - новый и «генос» - рождение, а вместе, дословно, «новое рождение», т. е. возникновение новых растений и животных), а нижнетретичный - то же самое, что палеоген (в переводе с древнегреческого - «древнее рождение», т. е. образование более древних по сравнению с современными форм органического мира). Наименование периодов отвечает часто названиям тех мест, где впервые были изучены отложения данной системы или давались по породам, характерным для данного периода, например, меловой, каменноугольный, или карбон (по-латыни «карбо» - уголь).
Отложения пород. Названия этих периодов, не вполне удачны, так как залежи мела и особенно месторождения угля встречаются не только среди отложений этих периодов.
  • Юрский период, иначе - юра, получил наименование от гор, где впервые отложения этой системы были подробно изучены (Французская и Швейцарская Юра);
  • триас (по-гречески «триас» - троица) вполне отвечает делению отложений этой системы на три отдела;
  • пермский - по древнему угро-финскому царству Пермии, на территории которого в бывшей Пермской губернии впервые были обнаружены отложения этой системы;
Отложения кембрийской, ордовикской, силурийской и девонской систем (иначе - кембрий, ордовик, силур и девон) были впервые изучены в Англии, откуда и происходят названия периодов.
  • Девонский - от провинции Девоншир;
  • силурийский - от наименования древних обитателей провинции Уэльс - силуров;
  • ордовицкий - тоже от древнего племени ордовициев, соседей силуров;
  • кембрийский - от древнего названия самой провинции Уэльс - Кембрия.
Последний столбец сводной геологической таблицы отмечает приблизительную продолжительность периодов в миллионах лет. Эти данные были получены при помощи уранового метода определения возраста изверженных пород различных периодов.

Геологические карты

Тщательное исследование выходов на земную поверхность отложений тех или иных систем позволяет составлять геологические карты . Хотя в основе их лежит географический контур с современным очертанием суши, с обозначением многих рек и точек городов, но они резко отличаются от обычных географических карт, хорошо всем знакомых! Человека, не искушенного в геологической науке, они поражают пестротой красок и прихотливостью узора, как на ковре. Каких тут красок только нет: зеленые, синие, желтые, оранжевые, красные, серые самых различных тонов! Различные буквы, значки, прихотливо изогнутые линии. Как разобраться в них?
Геологическая карта. Тут ничего мудреного нет: каждый цвет геологической карты связан с отложениями определенной системы. Например, серый цвет различных оттенков связан с каменноугольными отложениями различных возрастов: нижнекаменноугольный, среднекаменноугольный и верхнекаменноугольный отделы. Синяя окраска - это отложения юрского времени, зеленая - мелового, желтая - третичного. Нетрудно разобраться и в буквенных обозначениях карты:
  • А - это археозой и протерозой, иначе - докембрий,
  • Р - пермская система, иначе - пермь,
  • Т - триасовая,
  • С - каменноугольная и т. д.
Геологическая карта требует строгой точности от ее составителей, так как определяет направление и результаты поисковой работы геолога. Если хорошенько ознакомиться с геологической картой, то нетрудно усвоить не только все ее цвета и обозначения, но также и разобраться в запутанной сложности многокрасочного рисунка.
Нет, не в беспорядке и хаосе разбросаны краски на нашей карте, а покорные великим законам физики и химии, управляющим миром и нами,
- говорил академик А. Е. Ферсман . С геологической картой особенно тесно связано имя первого советского президента Академии наук СССР - А. П. Карпинского (1847-1936), которого справедливо называют «отцом русской геологии». Он составил первую геологическую карту России в 1892 г., а до того времени русским геологам приходилось пользоваться старой картой, составленной в сороковых годах прошлого столетия английским исследователем России знаменитым геологом Мурчисоном . На картах древнейших периодов жизни Земли, называемых палеогеографическими, А. П. Карпинский словно воскрешает перед нами картины далекого прошлого, картины вечной смены суши и моря на широких просторах Евразии. Ценный вклад внес А. П. Карпинский также в изучение горных пород и полезных ископаемых. Его работы широко воплощаются в жизнь, и в настоящее время современная теология, идя по путям, намеченным «отцом русской геологии», имеет большое значение в мировой науке.

Геологическая хронология, или геохронология , основана на выяснении геологической истории наиболее хорошо изученных регионов, например, в Центральной и Восточной Европе. На основе широких обобщений, сопоставления геологической истории различных регионов Земли, закономерностей эволюции органического мира в конце прошлого века на первых Международных геологических конгрессах была выработана и принята Международная геохронологическая шкала, отражающая последовательность подразделений времени, в течение которых формировались определенные комплексы отложений, и эволюцию органического мира. Таким образом, международная геохронологическая шкала - это естественная периодизация истории Земли.

Среди геохронологических подразделений выделяются: эон, эра, период, эпоха, век, время. Каждому геохронологическому подразделению отвечает комплекс отложений, выделенный в соответствии с изменением органического мира и называемый стратиграфическим: эонотема, группа, система, отдел, ярус, зона. Следовательно, группа является стратиграфическим подразделением, а соответствующее ей временное геохронологическое подразделение представляет эра. Поэтому существуют две шкалы: геохронологическая и стратиграфическая. Первую используют, когда говорят об относительном времени в истории Земли, а вторую, когда имеют дело с отложениями, так как в каждом месте земного шара в любой промежуток времени происходили какие-то геологические события. Другое дело, что накопление осадков было неповсеместным.

  • Архейская и протерозойская эонотемы, охватывающие почти 80% времени существования Земли, выделяются в криптозой, так как в докембрийских образованиях полностью отсутствует скелетная фауна и палеонтологический метод к их расчленению неприменим. Поэтому разделение докембрийских образований базируется в первую очередь на общегеологических и радиометрических данных.
  • Фанерозойский эон охватывает всего 570 млн. лет и расчленение соответствующей эонотемы отложений базируется на большом разнообразии многочисленной скелетной фауны. Фанерозойская эонотема подразделяется на три группы: палеозойскую, мезозойскую и кайнозойскую, отвечающие крупным этапам естественной геологической истории Земли, рубежи которых отмечены достаточно резкими изменениями органического мира.

Названия эонотем и групп происходят от греческих слов:

  • "археос" - самый древний, древнейший;
  • "протерос" - первичный;
  • "палеос" - древний;
  • "мезос" - средний;
  • "кайнос" - новый.

Слово "криптос" означает скрытый, а "фанерозой" - явный, прозрачный, так как появилась скелетная фауна.
Слово "зой" происходит от "зоикос" - жизненный. Следовательно, "кайнозойская эра" означает эру новой жизни и т.д.

Группы подразделяются на системы, отложения которых сформировались в течение одного периода и характеризуются только им свойственными семействами или родами организмов, а если это растения, то родами и видами. Системы были выделены в различных регионах и в разное время, начиная с 1822 г. В настоящее время выделяются 12 систем, названия большей части которых происходят от тех мест, где они впервые были описаны. Например, юрская система - от Юрских гор в Швейцарии, пермская - от Пермской губернии в России, меловая - по наиболее характерным породам - белому писчему мелу и т.д. Четвертичную систему нередко именуют антропогеновой, так как именно в этом возрастном интервале появляется человек.

Системы подразделяются на два или три отдела, которым соответствуют ранняя, средняя, поздняя эпохи. Отделы, в свою очередь, разделяются на ярусы, которые характеризуются присутствием определенных родов и видов ископаемой фауны. И, наконец, ярусы подразделяются на зоны, являющиеся наиболее дробной частью международной стратиграфической шкалы, которой в геохронологической шкале соответствует время. Названия ярусов даются обычно по географическим названиям районов, где этот ярус был выделен; например, алданский, башкирский, маастрихтский ярусы и т.д. В то же время зона обозначается по наиболее характерному виду ископаемой фауны. Зона охватывает, как правило, только определенную часть региона и развита на меньшей площади, нежели отложения яруса.

Всем подразделениям стратиграфической шкалы соответствуют геологические разрезы, в которых эти подразделения были впервые выделены. Поэтому такие разрезы являются эталонными, типичными и называются стратотипами, в которых содержится только им свойственный комплекс органических остатков, определяющий стратиграфический объем данного стратотипа. Определение относительного возраста каких-либо слоев и заключается в сравнении обнаруженного комплекса органических остатков в изучаемых слоях с комплексом ископаемых в стратотипе соответствующего подразделения международной геохронологической шкалы, т.е. возраст отложений определяют относительно стратотипа. Именно поэтому палеонтологический метод, несмотря на присущие ему недостатки остается наиболее важным методом определения геологического возраста горных пород. Определение относительного возраста, например, девонских отложений, свидетельствует лишь о том, что эти отложения моложе силурийских, но древнее каменноугольных. Однако установить длительность формирования девонских отложений и дать заключение о том, когда (в абсолютном летоисчислении) произошло накопление этих отложений - невозможно. Только методы абсолютной геохронологии способны ответить на этот вопрос.

Таб. 1. Геохронологическая таблица

Эра Период Эпоха Продол- житель- ность, млн. лет Время от начала периода до наших дней, млн. лет Геологические условия Растительный мир Животный мир
Кайнозой (время млекопитающих) Четвертичный Современная 0,011 0,011 Конец последнего ледникового периода. Климат теплый Упадок древесных форм, расцвет травянистых Эпоха человека
Плейстоцен 1 1 Повторные оледенения. Четыре ледниковых периода Вымирание многих видов растений Вымирание крупных млекопитающих. Зарождение человеческого общества
Третичный Плиоцен 12 13 Продолжается поднятие гор на западе Северной Америки. Вулканическая активность Упадок лесов. Распространение лугов. Цветковые растения; развитие однодольных Возникновение человека от человекообразных обезьян. Виды слонов, лошадей, верблюдов, сходные с современными
Миоцен 13 25 Образовались Сиерры и Каскадные горы. Вулканическая активность на северо-западе США. Климат прохладный Кульминационный период в эволюции млекопитающих. Первые человекообразные обезьяны
Олигоцен 11 30 Материки низменные. Климат теплый Максимальное распространение лесов. Усиление развития однодольных цветковых растений Архаические млекопитающие вымирают. Начало развития антропоидов; предшественники большинства ныне живущих родов млекопитающих
Эоцен 22 58 Горы размыты. Внутриконтинентальные моря отсутствуют. Климат теплый Разнообразные и специализированные плацентарные млекопитающие. Копытные и хищники достигают расцвета
Палеоцен 5 63 Распространение архаических млекопитающих
Альпийское горообразование (незначительное уничтожение ископаемых)
Мезозой (время пресмыкающихся) Мел 72 135 В конце периода образуются Анды, Альпы, Гималаи, Скалистые горы. До этого внутриконтинентальные моря и болота. Отложение писчего мела, глинистых сланцев Первые однодольные. Первые дубовые и кленовые леса. Упадок голосеменных Динозавры достигают наивысшего развития и вымирают. Зубатые птицы вымирают. Появление первых современных птиц. Архаические млекопитающие обычны
Юра 46 181 Материки довольно возвышенные. Мелководные моря покрывают некоторую часть Европы и запад США Увеличивается значение двудольных. Цикадофиты и хвойные обычны Первые зубатые птицы. Динозавры крупные и специализированные. Насекомоядные сумчатые
Триас 49 230 Материки приподняты над уровнем моря. Интенсивное развитие условий аридного климата. Широкое распространение континентальных отложений Господство голосеменных, уже начинающих клониться к упадку. Вымирание семенных папоротников Первые динозавры, птерозавры и яйцекладущие млекопитающие. Вымирание примитивных земноводных
Герцинское горообразование (некоторое уничтожение ископаемых)
Палеозой (эра древней жизни) Пермь 50 280 Материки приподняты. Образовались Аппалачские горы. Усиливается засушливость. Оледенение в южном полушарии Упадок плаунов и папоротникообразных растений Многие древние животные вымирают. Развиваются звероподобные пресмыкающиеся и насекомые
Верхний и средний карбон 40 320 Материки сначала низменные. Обширные болота, в которых образовался уголь Большие леса семенных папоротников и голосеменных Первые пресмыкающиеся. Насекомые обычны. Распространение древних земноводных
Нижний карбон 25 345 Климат вначале теплый и влажный, позднее в связи с поднятием суши - более прохладный Господствуют плауны и папоротникообразные растения. Все шире распространяются голосеменные Морские лилии достигают наивысшего развития. Распространение древних акул
Девон 60 405 Внутриконтинентальные моря небольшого размера. Поднятие суши; развитие аридного климата. Оледенение Первые леса. Наземные растения хорошо развиты. Первые голосеменные Первые земноводные. Обилие двоякодышащих и акул
Силур 20 425 Обширные внутриконтинентальные моря. Низменные местности становятся все более засушливыми по мере поднятия суши Первые достоверные следы наземных растений. Господствуют водоросли Господствуют морские паукообразные. Первые (бескрылые) насекомые. Усиливается развитие рыб
Ордовик 75 500 Значительное погружение суши. Климат теплый, даже в Арктике Вероятно, появляются первые наземные растения. Обилие морских водорослей Первые рыбы, вероятно пресноводные. Обилие кораллов и трилобитов. Разнообразные молюски
Кембрий 100 600 Материки низменные, климат умеренный. Самые древние породы с обильными ископаемыми Морские водоросли Господствуют трилобиты и нлеченогие. Зарождение большинства современных типов животных
Второе великое горообразование (значительное уничтожение ископаемых)
Протерозой 1000 1600 Интенсивный процесс осадкообразования. Позднее - вулканическая активность. Эрозия на обширных площадях. Многократные оледенения Примитивные водные растения - водоросли, грибы Различные морские простейшие. К концу эры - моллюски, черви и другие морские беспозвоночные
Первое великое горообразование (значительное уничтожение ископаемых)
Архей 2000 3600 Значительная вулканическая активность. Слабый процесс осадкообразования. Эрозия на больших зглощадях Ископаемые отсутствуют. Косвенные указания на существование живых организмов в виде отложений органического вещества в породах

Проблема определения абсолютного возраста горных пород, продолжительности существования Земли издавна занимала умы геологов, и попытки ее решения предпринимались много раз, для чего использовались различные явления и процессы. Ранние представления об абсолютном возрасте Земли были курьезными. Современник М. В. Ломоносова французский естествоиспытатель Бюффон определял возраст нашей планеты всего лишь в 74 800 лет. Другие ученые давали различные цифры, не превышающие 400-500 млн. лет. Здесь следует отметить, что все эти попытки заранее были обречены на неудачу, так как они исходили из постоянства скоростей процессов, которые, как известно, менялись в геологической истории Земли. И только в первой половине XX в. появилась реальная возможность измерять действительно абсолютный возраст горных пород, геологических процессов и Земли как планеты.

Таб.2. Изотопы, используемые для определения абсолютного возраста
Материнский изотоп Конечный продукт Период полураспада, млрд.лет
147 Sm 143 Nd+He 106
238 U 206 Pb+ 8 He 4,46
235 U 208 РЬ+ 7 He 0,70
232 Th 208 РЬ+ 6 Не 14,00
87 Rb 87 Sr+β 48,80
40 K 40 Аr+ 40 Са 1,30
14 C 14 N 5730 лет

Возникновение Земли и ранние этапы ее становления

Одной из важных задач современного естествознания в области наук о Земле является восстановление истории ее развития . По современным космогоническим представлениям, Земля образовалась из рассеянного в протосолнечной системе газопылевого вещества. Один из наиболее вероятных вариантов возникновения Земли выглядит следующим образом. Вначале образовались Солнце и уплощенная вращающаяся околосолнечная туманность из межзвездного газопылевого облака под влиянием, например, взрыва близкой сверхновой звезды. Далее происходила эволюция Солнца и околосолнечной туманности с передачей электромагнитным или турбулентно-конвективным способом момента количества движения от Солнца планетам. В последующем «пыльная плазма» конденсировалась в кольца вокруг Солнца, а материал колец образовал так называемые планетезимали, которые конденсировались до планет. После этого подобный процесс повторился вокруг планет, что привело к образованию спутников. Считается, что этот процесс занял около 100 млн лет.

Предполагается, что далее в результате дифференциации вещества Земли под действием ее гравитационного поля и радиоактивного нагрева возникли и развились различные по химическому составу, агрегатному состоянию и физическим свойствам оболочки - геосферы Земли. Более тяжелый материал сформировал ядро, состоящее, вероятно, из железа с примесью никеля и серы. В мантии остались несколько более легкие элементы. Согласно одной из гипотез, мантия сложена простыми оксидами алюминия, железа, титана кремния и др. О составе земной коры уже говорилось достаточно подробно в § 8.2. Она сложена более легкими силикатами. Еще более легкие газы и влага сформировали первичную атмосферу.

Как уже говорилось, предполагается, что Земля родилась из скопления холодных твердых частиц, выпадавших из газопылевой туманности и слипавшихся под влиянием взаимного притяжения. По мере роста планеты она разогревалась вследствие соударения этих частиц, достигавших нескольких сот километров, подобно современным астероидам, и выделения теплоты не только известными нам теперь в коре естественно -радиоактивными элементами, но и более чем 10 вымершими с тех пор радиоактивными изотопами AI, Be, Cl и др. В результате могло происходить полное (в ядре) или частичное (в мантии) плавление вещества. В начальный период своего существования, примерно до 3,8 млрд лет, Земля и другие планеты земной группы, а также Луна подвергались усиленной бомбардировке мелкими и крупными метеоритами. Следствием этой бомбардировки и более раннего соударения планетезималей могло стать выделение летучих и начало образования вторичной атмосферы, так как первичная, состоявшая из газов, захваченных при образовании Земли, скорее всего быстро рассеялась в космическом пространстве. Несколько позже стала формироваться гидросфера. Сформировавшиеся таким образом атмосфера и гидросфера пополнялись в процессе дегазации мантии при вулканической деятельности.

Падение крупных метеоритов создавало обширные и глубокие кратеры, подобные наблюдаемым в настоящее время на Луне, Марсе, Меркурии, где следы их не стерты последующими изменениями. Кратерообразование могло провоцировать излияния магмы с образованием базальтовых полей, подобных покрывающим лунные «моря». Так, вероятно, образовалась первичная кора Земли, которая, однако, не сохранилась на современной ее поверхности, за исключением относительно небольших фрагментов в «более молодой» коре континентального типа.

Эта кора, содержащая в своем составе уже граниты и гнейсы, правда, с меньшим содержанием кремнезема и калия, чем в «нормальных» гранитах, появилась на рубеже около 3,8 млрд лет и известна нам по обнажениям в пределах кристаллических щитов практически всех континентов. Способ образования древнейшей континентальной коры пока во многом неясен. В составе этой коры, повсеместно метаморфизованной в условиях высоких температур и давлений, находят породы, текстурные особенности которых свидетельствуют о накоплении в водной среде, т.е. в эту отдаленную эпоху уже существовала гидросфера. Возникновение первой коры, подобной современной, требовало поступления из мантии больших количеств кремнезема, алюминия, щелочей, в то время как сейчас мантийный магматизм создает очень ограниченный объем обогащенных этими элементами пород. Считается, что 3,5 млрд лет назад на площади современных континентов была широко распространена серогнейсовая кора, названная так по преобладающему типу слагающих ее пород. В нашей стране она, например, известна на Кольском полуострове и в Сибири, в частности в бассейне р. Алдан.

Принципы периодизации геологической истории Земли

Дальнейшие события в геологическое время часто определяются, согласно относительной геохронологии, категориями «древнее», «моложе». Например, какая-то эра древнее некоторой другой. Отдельные отрезки геологической истории называются (в порядке уменьшения их продолжительности) зонами, эрами, периодами, эпохами, веками. Их выявление основано на том факте, что геологические события запечатлеваются в горных породах, а осадочные и вулканогенные породы располагаются в земной коре слоями. В 1669 г. Н. Стеной установил закон последовательности напластования, согласно которому нижележащие пласты осадочных пород древнее вышележащих, т.е. образовались ранее их. Благодаря этому появилась возможность определения относительной последовательности образования слоев, а значит, связанных с ними геологических событий.

Основным в относительной геохронологии является биостратиграфический, или палеонтологический, метод установления относительного возраста и последовательности залегания пород. Этот метод был предложен У. Смитом в начале XIX в., а затем развит Ж. Кювье и А. Броньяром. Дело в том, что в большинстве осадочных пород можно встретить остатки животных или растительных организмов. Ж.Б. Ламарк и Ч. Дарвин установили, что животные и растительные организмы в течение геологической истории постепенно совершенствовались в борьбе за существование, приспосабливаясь к изменяющимся условиям жизни. Некоторые животные и растительные организмы на определенных стадиях развития Земли вымирали, на смену им приходили другие, более совершенные. Таким образом, по остаткам ранее живших более примитивных предков, найденным в каком-нибудь пласте, можно судить об относительно более древнем возрасте данного пласта.

Еще один метод геохронологического расчленения пород, особенно важный для расчленения магматических образований океанического дна, основан на свойстве магнитной восприимчивости горных пород и минералов, образующихся в магнитном поле Земли. С изменением ориентировки породы относительно магнитного поля или самого поля часть «врожденной» намагниченности сохраняется, а смена полярности запечатлевается в изменении ориентировки остаточной намагниченности пород. В настоящее время установлена шкала смены таких эпох.

Абсолютная геохронология - учение об измерении геологического времени, выраженного в обычных абсолютных астрономических единицах (годах), - определяет время возникновения, завершения и длительность всех геологических событий, в первую очередь время образования или преобразования (метаморфизма) горных пород и минералов, так как по их возрасту определяется возраст геологических событий. Основным методом здесь является анализ соотношения радиоактивных веществ и продуктов их распада в горных породах, образовывавшихся в разные эпохи.

Древнейшие породы в настоящее время установлены в Западной Гренландии (3,8 млрд лет). Самый большой возраст (4,1 - 4,2 млрд лет) получен по цирконам из Западной Австралии, но циркон здесь залегает в переотложенном состоянии в мезозойских песчаниках. С учетом представлений об одновременности образования всех планет Солнечной системы и Луны и возраста самых древних метеоритов (4,5-4,6 млрд лет) и древних лунных пород (4,0-4,5 млрд лет) возраст Земли принимается равным 4,6 млрд лет.

В 1881 г. на II Международном геологическом конгрессе в Болонье (Италия) были утверждены основные подразделения совмещенных стратиграфической (для разделения слоистых осадочных пород) и геохронологической шкал. По этой шкале история Земли делилась на четыре эры в соответствии с этапами развития органического мира: 1) архейская, или археозойская - эра древнейшей жизни; 2) палеозойская - эра древней жизни; 3) мезозойская - эра средней жизни; 4) кайнозойская - эра новой жизни. В 1887 г. из состава архейской эры выделили протерозойскую - эру первичной жизни. Позднее шкала совершенствовалась. Один из вариантов современной геохронологической шкалы представлен в табл. 8.1. Архейская эра разделяется на две части: ранний (древнее 3500 млн лет) и поздний архей; протерозойская - также на две: ранний и поздний протерозой; в последнем выделяют рифейский (название произошло от древнего названия Уральских гор) и вендский периоды. Фанерозойский зон подразделяется на палеозойскую, мезозойскую и кайнозойскую эры и состоит из 12 периодов.

Таблица 8.1. Геохронологическая шкала

Возраст (начало),

Фанерозой

Кайнозойская

Четвертичный

Неогеновый

Палеогеновый

Мезозойская

Триасовый

Палеозойская

Пермский

Каменноугольный

Девонский

Силурийский

Ордовикский

Кембрийский

Криптозой

Протерозойская

Вендский

Рифейский

Карельский

Архейская

Катархейская

Основные этапы эволюции земной коры

Кратко рассмотрим основные этапы эволюции земной коры как косного субстрата, на котором развилось многообразие окружающей природы .

В apxee еще довольно тонкая и пластичная кора под влиянием растяжения испытала многочисленные разрывы сплошности, через которые к поверхности вновь устремилась базальтовая магма, заполнившая прогибы длиной сотни километров и шириной многие десятки километров, известные как зелено-каменные пояса (этим названием они обязаны преобладающему зеленосланцевому низкотемпературному метаморфизму базальтовых пород). Наряду с базальтами среди лав нижней, основной по мощности части разреза этих поясов встречаются высокомагнезиальные лавы, свидетельствующие об очень большой степени частичного плавления мантийного вещества, что говорит о высоком тепловом потоке, намного превышавшем современный. Развитие зеленокаменных поясов заключалось в смене типа вулканизма в направлении увеличения содержания в нем диоксида кремния (SiO 2), в деформациях сжатия и метаморфизме осадочно-вулканогенного выполнения и, наконец, в накоплении обломочных осадков, свидетельствующих об образовании гористого рельефа.

После смены нескольких поколений зеленокаменных поясов архейский этап эволюции земной коры завершился 3,0 -2,5 млрд лет назад массовым образованием нормальных гранитов с преобладанием К 2 О над Na 2 O. Гранитизация, а также региональный метаморфизм, местами достигший высшей ступени, привели к формированию зрелой континентальной коры на большей части площади современных материков. Однако и эта кора оказалась недостаточно устойчивой: в начале протерозойской эры она испытала дробление. В это время возникла планетарная сеть разломов и трещин, заполнявшихся дайками (пластинообразными геологическими телами). Одна из них - Великая дайка в Зимбабве - имеет длину более 500 км и ширину до 10 км. Кроме того, впервые проявилось рифтообразование, давшее начало зонам прогибания, мощного осадконакопления и вулканизма. Их эволюция привела к созданию в конце раннего протерозоя (2,0-1,7 млрд лет назад) складчатых систем, вновь спаявших обломки архейской континентальной коры, чему способствовала новая эпоха мощного гранитообразования.

В итоге к концу раннего протерозоя (к рубежу 1,7 млрд лет назад) зрелая континентальная кора существовала уже на 60- 80% площади ее современного распространения. Более того, некоторые ученые полагают, что на этом рубеже вся континентальная кора составляла единый массив - суперконтинент Мегагею (большая земля), которому на другой стороне земного шара противостоял океан - предшественник современного Тихого океана - Мегаталасса (большое море). Этот океан был менее глубоким, чем современные океаны, ибо рост объема гидросферы за счет дегазации мантии в процессе вулканической деятельности продолжается всю последующую историю Земли, хотя и более медленно. Не исключено, что прообраз Мегаталассы появился еще раньше, в конце архея.

В катархее и начале архея появились первые следы жизни - бактерии и водоросли, а в позднем архее распространились водорослевые известковые постройки - строматолиты. В позднем архее началось, а в раннем протерозое завершилось коренное изменение состава атмосферы: под влиянием жизнедеятельности растений в ней появился свободный кислород, тогда как катархейская и раннеархейская атмосфера состояла из водяного пара, СО 2 , СО, СН 4 , N, NH 3 и H 2 S с примесью НС1, HF и инертных газов.

В позднем протерозое (1,7-0,6 млрд лет назад) Мегагея стала постепенно раскалываться, и этот процесс резко усилился в конце протерозоя. Следами его являются протяженные континентальные рифтовые системы, погребенные в основании осадочного чехла древних платформ. Важнейшим его результатом было образование обширных межконтинентальных подвижных поясов - Северо-Атлантического, Средиземноморского, Урало-Охотского, разделивших континенты Северной Америки, Восточной Европы, Восточной Азии и наиболее крупный обломок Мегагеи - южный суперконтинент Гондвану. Центральные части этих поясов развивались на новообразованной в процессе рифтогенеза океанской коре, т.е. пояса представляли собой океанские бассейны. Их глубина постепенно увеличивалась по мере роста гидросферы. Одновременно подвижные пояса развивались по периферии Тихого океана, глубина которого также возрастала. Климатические условия становились более контрастными, о чем свидетельствует появление, особенно в конце протерозоя, ледниковых отложений (тиллитов, древних морен и водно-ледниковых осадков).

Палеозойский этап эволюции земной коры характеризовался интенсивным развитием подвижных поясов - межконтинентальных и окраинно-континентальных (последние на периферии Тихого океана). Эти пояса расчленялись на окраинные моря и островные дуги, их осадочно-вулканогенные толщи испытывали сложные складчато-надвиговые, а затем сбрососдвиговые деформации, в них внедрялись граниты и на этой основе формировались складчатые горные системы. Этот процесс протекал неравномерно. В нем различают ряд интенсивных тектонических эпох и гранитного магматизма: байкальскую - в самом конце протерозоя, салаирскую (от хребта Са-лаир в Средней Сибири) - в конце кембрия, таковскую (от Таковских гор на востоке США) - в конце ордовика, каледонскую (от древнеримского названия Шотландии) - в конце силура, акадскую (Акадия - старинное название северо-восточных штатов США) - в середине девона, судетскую - в конце раннего карбона, заальскую (от р. Заале в Германии) - в середине ранней перми. Первые три тектонические эпохи палеозоя нередко объединяют в каледонскую эру тектогенеза, последние три - в герцинскую, или варисскую. В каждую из перечисленных тектонических эпох определенные части подвижных поясов превращались в складчатые горные сооружения, а после разрушения (денудации) входили в состав фундамента молодых платформ. Но некоторые из них частично испытывали активизацию в последующие эпохи горообразования.

К концу палеозоя межконтинентальные подвижные пояса полностью замкнулись и заполнились складчатыми системами. В результате отмирания Северо-Атлантического пояса Североамериканский континент сомкнулся с Восточно-Европейским, а последний (после завершения развития Урало-Охотского пояса) - с Сибирским, Сибирский - с Китайско-Корейским. В итоге образовался суперконтинент Лавразия, а отмирание западной части Средиземноморского пояса привело к его объединению с южным суперконтинентом - Гондваной - в одну континентальную глыбу - Пангею. Восточная часть Средиземноморского пояса в конце палеозоя - начале мезозоя превратилась в огромный залив Тихого океана, по периферии которого также поднялись складчатые горные сооружения.

На фоне этих изменений структуры и рельефа Земли продолжалось развитие жизни. Первые животные появились еще в позднем протерозое, а на самой заре фанерозоя существовали почти все типы беспозвоночных, но они еще были лишены раковин или панцирей, которые известны с кембрия. В силуре (или уже в ордовике) начался выход растительности на сушу, а в конце девона существовали леса, получившие наибольшее распространение в каменноугольном периоде. Рыбы появились в силуре, земноводные - в карбоне.

Мезозойская и кайнозойская эры - последний крупный этап развития структуры земной коры, который отмечен становлением современных океанов и обособлением современных континентов. В начале этапа, в триасе, еще существовала Пангея, но уже в раннем юрском периоде она снова раскололась на Лавразию и Гондвану вследствие возникновения широтного океана Тетис, протянувшегося от Центральной Америки до Индокитая и Индонезии, а на западе и на востоке он смыкался с Тихим океаном (рис. 8.6); этот океан включал и Центральную Атлантику. Отсюда в конце юры процесс раздвига континентов распространился к северу, создав в течение мелового периода и раннего палеогена Северную Атлантику, а начиная с палеогена - Евразийский бассейн Северного Ледовитого океана (Амеразийский бассейн возник раньше как часть Тихого океана). В итоге Северная Америка отделилась от Евразии. В поздней юре началось формирование Индийского океана, и с начала мела стала раскрываться с юга Южная Атлантика. Это означало начало распада Гондваны, существовавшей как единое целое в течение всего палеозоя. В конце мела Северная Атлантика соединилась с Южной, отделив Африку от Южной Америки. Тогда же Австралия отделилась от Антарктиды, а в конце палеогена произошло отделение последней от Южной Америки.

Таким образом, к концу палеогена оформились все современные океаны, обособились все современные континенты и облик Земли приобрел вид, в основном близкий к нынешнему. Однако еще не было современных горных систем.

С позднего палеогена (40 млн лет назад) началось интенсивное горообразование, достигшее кульминации в последние 5 млн лет. Этот этап становления молодых складчато-покровных горных сооружений, образования возрожденных сводово-глыбовых гор выделяют как неотектонический. Фактически неотектонический этап является подэтапом мезозойско-кайнозойского этапа развития Земли, так как именно на этом этапе оформились основные черты современного рельефа Земли, начиная с распределения океанов и континентов.

На этом этапе завершилось формирование основных черт современной фауны и флоры. Мезозойская эра была эрой пресмыкающихся, млекопитающие стали преобладать в кайнозое, а в позднем плиоцене появился человек. В конце раннего мела появились покрытосемянные растения и суша приобрела травяной покров. В конце неогена и антропогене высокие широты обоих полушарий были охвачены мощным материковым оледенением, реликтами которого являются ледниковые шапки Антарктиды и Гренландии. Это было третье крупное оледенение в фанерозое: первое имело место в позднем ордовике, второе - в конце карбона - начале перми; оба они были распространены в пределах Гондваны.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

    Что такое сфероид, эллипсоид и геоид? Каковы параметры принятого в нашей стране эллипсоида? Зачем он нужен?

    Каково внутреннее строение Земли? На основании чего делается заключение о ее строении?

    Каковы основные физические параметры Земли и как они изменяются с глубиной?

    Каков химический и минералогический состав Земли? На основании чего делается заключение о химическом составе всей Земли и земной коры?

    Какие основные типы земной коры выделяют в настоящее время?

    Что такое гидросфера? Что такое круговорот воды в природе? Какие основные процессы происходят в гидросфере и ее элементах?

    Что такое атмосфера? Каково ее строение? Какие процессы происходят в ее пределах? Что такое погода и климат?

    Дайте определение эндогенных процессов. Какие эндогенные процессы вы знаете? Кратко их охарактеризуйте.

    В чем заключается сущность тектоники литосферных плит? Каковы ее основные положения?

10. Дайте определение экзогенных процессов. В чем основная сущность этих процессов? Какие эндогенные процессы вы знаете? Кратко их охарактеризуйте.

11. Как взаимодействуют эндогенные и экзогенные процессы? Каковы результаты взаимодействия этих процессов? В чем сущность теорий В. Дэвиса и В. Пенка?

    Каковы современные представления о возникновении Земли? Как происходило ее раннее становление как планеты?

    На основании чего производится периодизация геологической истории Земли?

14. Как развивалась земная кора в геологическом прошлом Земли? Каковы основные этапы развития земной коры?

ЛИТЕРАТУРА

    Аллисон А., Палмер Д. Геология. Наука о вечно меняющейся Земле. М., 1984.

    Будыко М.И. Климат в прошлом и будущем. Л., 1980.

    Вернадский В.И. Научная мысль как планетарное явление. М., 1991.

    Гаврилов В.П. Путешествие в прошлое Земли. М., 1987.

    Геологический словарь. Т. 1, 2. М., 1978.

    Городницкий A . M ., Зоненшайн Л.П., Мирлин Е.Г. Реконструкции положения материков в фанерозое. М., 1978.

7. Давыдов Л.К., Дмитриева A.A., Конкина Н.Г. Общая гидрология. Л., 1973.

    Динамическая геоморфология /Под ред. Г.С. Ананьева, Ю.Г. Симонова, А.И. Спиридонова. М., 1992.

    Дэвис В.М. Геоморфологические очерки. М., 1962.

10. Земля. Введение в общую геологию. М., 1974.

11. Климатология / Под ред. O.A. Дроздова, Н.В. Кобышевой. Л., 1989.

    Короновский Н.В., Якушева А.Ф. Основы геологии. М., 1991.

    Леонтьев O.K., Рычагов Г.И. Общая геоморфология. М., 1988.

    Львович М.И. Вода и жизнь. М., 1986.

    Маккавеев Н.И., Чалов P.C. Русловые процессы. М., 1986.

    Михайлов В.Н., Добровольский А.Д. Общая гидрология. М., 1991.

    Монин A.C. Введение в теорию климата. Л., 1982.

    Монин A.C. История Земли. М., 1977.

    Неклюкова Н.П., Душина И.В., Раковская Э.М. и др. География. М., 2001.

    Немков Г.И. и др. Историческая геология. М., 1974.

    Неспокойный ландшафт. М., 1981.

    Общая и полевая геология / Под ред. А.Н. Павлова. Л., 1991.

    Пенк В. Морфологический анализ. М., 1961.

    Перелъман А.И. Геохимия. М., 1989.

    Полтараус Б.В., Кислое A.B. Климатология. М., 1986.

26. Проблемы теоретической геоморфологии /Под ред. Л.Г. Никифорова, Ю.Г. Симонова. М., 1999.

    Сауков A.A. Геохимия. M., 1977.

    Сорохтин О.Г., Ушаков С.А. Глобальная эволюция Земли. М., 1991.

    Ушаков С.А., Ясаманов H.A. Дрейф материков и климат Земли. М., 1984.

    Хаин В.Е., Ломте М.Г. Геотектоника с основами геодинамики. М., 1995.

    Хаин В.Е., Рябухин А.Г. История и методология геологических наук. М., 1997.

    Хромов С.П., Петросянц М.А. Метеорология и климатология. М., 1994.

    Щукин И.С. Общая геоморфология. T.I. M., 1960.

    Экологические функции литосферы / Под ред. В.Т. Трофимова. М., 2000.

    Якушева А.Ф., Хаин В.Е., Славин В.И. Общая геология. М., 1988.

1.Подразделения докембрия.

Архейско-протерозойский, или криптозойский, этап охватывает историю Земли протяженностью 4 млрд. лет. Он продолжался почти в 7 раз дольше фанерозойского. За это время сфоормировались все существующие внешние оболочки - литосфера, гидросфера и атмосфера.

Геохронологическая шкала докембрия
Относительная геохронология
Эры (группы) Части эр (подгруппы)
протерозойская - PR поздний протерозой - PR3 Венд-V
рифей –R поздний рифей-R3
средний рифей-R2
ранний рифей-R1
средний протерозой - PR2
ранний протерозой - PR1
Архейская - AR поздний архей - AR2
ранний архей (катархей) - AR1

2.История развития Земли в докембрии.

Докембрий, охватывающий подавляющую часть геологической истории Земли (свыше 80%), остается вместе с тем наименее изученным отрезком времени. Из-за высокой степени метаморфизма толщ докембрия, отсутствия ископаемых остатков, слабая обнаженность докембрийских пород и т.д.

По мнению ряда ученых, начальный этап геологического развития Земли был еще бесплатформенным и безгеосинклинальным. На этом этапе развития первичная земная кора имела основной состав и формировалась за счет базальтовых излияний из верхней мантии. Одновременно с этим в первичной земной коре уже возникали многочисленные куполовидные поднятия до 50-60 км в поперечнике, в которых начинали зарождаться первые гранитизированные участки земной коры. Весь этот этап развития получил название нуклеарного этапа; он продолжался до конца архейской эры.

Следующий этап тектонического развития земной коры наступает с конца архея, когда на нуклеарной земной коре закладываются глубокие линейные прогибы, названные протогеосинклиналями. В них накапливался обломочный материал, сносимый с участков древнейшей гранитизации и выступающих частей первичной базальтовой земной коры.

Под влиянием древнейших эпох тектогенеза - саамский и беломорской - в конце архея - начале протерозоя сформировались первые платформенные образования - протоплатформы, разделенные геосинклинальными прогибами.

Наиболее молодые протогеосинклинали прекратили свое существование в начале среднего протерозоя. С их исчезновением прекратилось образование ряда типичных для этого этапа развития комплексов и формаций пород - лептитов, мигматитов, чарнокитов и джеспилитов.

Следующая эпоха тектогенеза - карельская, проявилась в конце среднего протерозоя.

С окончанием карельской складчатости возникли крупные платформы, между которыми свое развитие продолжали геосинклинальные прогибы; в которых накапливались породы нового типа (водорослевые известняки и доломиты, углистые и графитистые сланцы).

В Северном полушарии в интервале между карельской и байкальской эпохами тектогенеза интенсивных тектонических движений не происходило в отличии от Южного полушария.

Байкальская эпоха тектогенеза проявилась в конце рифея - начале кембрийского периода. Ее структуры образуют Тимано-Печорский район, западное, юго-западное и южное обрамление Сибирской платформы, которые возникли в окраинных зонах Урало-Монгольского геосинклинального пояса.

К концу рифея байкальского тектогенеза отмечается заложение ряда геосинклинальных прогибов - проявление новой эпохи тектогенеза - каледонского, которые возникли, в частности, в том же Урало-Монгольском геосинклинальном поясе в пределах Саян и Алтая.

Существует представление, что к концу протерозойской эры все южные древние платформы - Южно-Американская, Африканская, Индостанская, Австралийская и Восточно-Антарктическая - были ╚спаяны╩ в один обширный материк, описываемый под названием Гондваны. В его состав входили также территории, занятые ныне впадинами Индийского и южной части Атлантического океанов.

3.Органический мир и полезные ископаемые докембрия.

Архейские породы не содержат органических остатков. Самые древние остатки организмов известны только из верхнепротерозойских, или рифейских, отложений.

Есть основание полагать, что органический мир на Земле возник задолго до рифея - в архее.

Полагают, что в архее были широко развиты одноклеточные микроскопические организмы, а возможно, и многоклеточные, но без минерального скелета. Многочисленные находки разнообразных строматолитов синезеленых водорослей в рифейских отложениях позволяют расчленить рифеи на четыре комплекса.

Породы докембрия, кроме железных руд, которые образуют крупные месторождения не только в России (Курская магнитная аномалия, Кольский полуостров и Карелия, Алданский щит и др.), но и во всем мире, содержат и другие рудные ископаемые: коренные месторождения золота на Алданском щите и Енисейском мегантиклинории, медные руды, редкие элементы и др. Из нерудных ископаемых - месторождения слюд на Алданском щите. Широкое применение в качестве строительных материалов имеют граниты, лабрадориты, мраморы.

4.История развития Земли в раннем палеозое.

Кембрийский период.

В начале кембрийского периода в связи с полным окончанием байкальского тектогенеза окончательно определились контуры древних и эпибайкальских платформ.

На всех древних платформах к началу палеозойской эры отчетливо определились щиты и плиты.

Так, на Восточно-Европейской платформе закладывается крупная Московская синеклиза. На Сибирской платформе к тому же времени относится заложение очень крупной Тунгусской синеклизы. Процесс заложения синеклиз на древних платформах сопровождается возникновением в теле платформы глубоких разломов фундамента.

Выделившиеся к концу докембрия древние платформы отделялись одна от другой геосинклинальными поясами. Между Восточно-Европейской и Южно-Китайской платформами с одной стороны и Гондваной - с другой располагался обширный Средиземноморский геосинклинальный пояс. Между Восточно-Европейской и Сибирской платформами и между Сибирской и Северо-Китайской платформами протягивался коленообразно изгибающийся обширный Урало-Монгольский геосинклинальный пояс. Северо-Американская и Восточно-Европейская платформы разделялись Атлантическим геосинклинальным поясом. К северу от Северо-Американской платформы протягивался Арктический геосинклинальный пояс. Два геосинклинальных пояса огромной протяженности (как и в современную эпоху) окаймляли впадину Тихого океана: Восточно-Тихоокеанский - вдоль Американского побережья Тихого океана и Западно-Тихоокеанский - вдоль Азиатского побережья; их часто рассматривают как единый тихоокеанский геосинклинальный пояс.

Одной из главных особенностей палеографии кембрийского периода является довольно широкое развитие морского режима на платформах Северного полушария, в то время как Гондванский материк в подавляющей своей части характеризовался континентальным режимом.

В геосинклинальных поясах энергично происходили подводный и надводный вулканизм, а также и интрузивный магматизм, представленный ультраосновными и оновными породами, а на последующих этапах магматизма - гранитоидами.

Ордовикский период.

В ордовикском периоде существовали те же платформы и геосинклинальные пояса, что и в конце кембрийского периода.

К концу периода в некоторых геосинклинальных прогибах собственно геосинклинальная стадия развития пришла к концу и сменилась орогенной стадией (в Северном Тянь-Шане и других структурах Урало-Монгольского геосинклинального пояса, Аппалачской и Грампианской геосинклинальных областях в Атлантическом геосинклинальном поясе).

В стуктуре платформ на протяжении ордовика отмечается дальнейшее углубление древних синеклиз, формирование новых впадин.

К концу периода в связи с горообразованием в ряде геосинклинальных систем происходит сокращение геосинклинальных и эпиконтинентальных морей.

Магматическая деятельность в подвижных, геосинклинальных зонах проявляется активно. Отмечается присутствие ультраосновных пород, а также гранитоидных интрузий.

Силурийский период.

Силурийский период - заключительный период проявления каледонского тектонического этапа развития земной коры.

В областях каледонской консолидации так называемые унаследованные прогибы и наложенные впадины, в которых на протяжении девона - перми накапливались своеобразные формации пород, и лишь после этого в них начинался платформенный этап развития.

Области каледонских консолидированных структур наиболее отчетливо обозначились в Атлантическом геосинклинальном поясе, особенно в пределах Грампианской геосинклинальной области (Скандинавские горы, северная часть Великобританских островов западная часть островов Шпицберген, восточная оконечность Гренландии), частично в Аппалачской геосинклинальной области, в виде обширных территорий - в Урало-Монгольском геосинклинальном поясе (Саяны, Центральный Казахстан, Северный Тянь-Шань, Северная Земля) и в Западно-Тихоокеанском геосинклинальном поясе (Катазиатская геосинклинальная область - к востоку от Южно-Китайской платформы, Автралийская геосинклинальная область - западнее дуги Автралийских Кордильер).

Образование обширных консолидированных площадей в Грампианской геосинклинальной области вызвало воссоединение Восточно-Европейской и Северо-Американской платформ в один обширный материк, названный Северо-Атлантическим.

Под влиянием каледонского тектогенеза в фундаменте ряда платформ возникают глубокие разломы, продолжается углубление синеклиз и заложение впадин.

В начале силурийского периода после сравнительно небольшой ордовикской регрессии снова происходит трансгрессия моря, по своим масштабам почти равная ордовикской, и примерно в тех же районах. Однако во второй половине периода в связи с завершением каледонского этапа развития происходят обширные поднятия как в геосинклинальных поясах, так и на платформах. В результате развиваются регрессии, и многие территории платформ не только осушаются, но надолго, на целые периоды, приобретают континентальный режим развития.

Представляем вашему вниманию статью о классическом понимании развития нашей планеты Земля, написанную нескучно, понятно и не слишком длинно….. Если кто из людей зрелого возраста подзабыл — будет интересно прочитать, ну для тех, кто помоложе, да еще и для реферата вообще прекрасный материал.

Вначале не было ничего. В бескрайнем космическом пространстве существовало только гигантское облако из пыли и газов. Можно допустить, что время от времени сквозь эту субстанцию на огромной скорости проносились космические корабли с представителями вселенского разума. Гуманоиды скучающе смотрели в иллюминаторы и даже отдалённо не догадывались, что через несколько млрд. лет в этих местах зародятся разум и жизнь.

Газопылевое облако со временем трансформировалось в Солнечную систему. А после того, как возникло светило, появились и планеты. Одной из них стала наша родная Земля. Произошло это 4,5 млрд. лет назад. Вот с тех далёких времён и отсчитывается возраст голубой планеты, благодаря которой мы и существуем в этом мире.

Вся история Земли делится на два огромных по времени этапа

  • Первый этап характеризуется отсутствием сложных живых организмов. Существовали лишь одноклеточные бактерии, обосновавшиеся на нашей планете примерно 3,5 млрд. лет назад.
  • Второй этап начался примерно 540 млн. лет назад. Это время, когда живые многоклеточные организмы расселились по Земле. Здесь имеются в виду и растения, и животные. Причём средой их обитания стали и моря, и суша. Второй период продолжается по сей день, а его венцом является человек.

Такие огромные временные этапы называют эонами . Каждому эону присуща своя эонотема . Последняя представляет собой определённый этап геологического развития планеты, который кардинально отличается от других этапов литосферой, гидросферой, атмосферой, биосферой. То есть каждая эонотема строго специфична и не похожа на другие.

Всего насчитывается 4 эона. Каждый из них, в свою очередь, подразделяется на эры развития Земли, а те делятся на периоды. Отсюда видно, что существует жёсткая градация больших интервалов времени, а за основу берётся геологическое развитие планеты.

Катархей

Самый древний эон называется катархей. Начался он 4,6 млрд. лет назад, а закончился 4 млрд. лет назад. Таким образом, его длительность составила 600 млн. лет. Время очень древнее, поэтому его не разделили ни на эры, ни на периоды. Во времена катархея не было ни земной коры, ни ядра. Планета представляла собой холодное космическое тело. Температура в его недрах соответствовала температуре плавления вещества. Сверху поверхность была покрыта реголитом, как в наше время лунная. Рельеф был практически ровным из-за постоянных мощных землетрясений. Никакой атмосферы и кислорода, естественно, не было.

Архей

Второй эон называется архей. Начался он 4 млрд. лет назад, а закончился 2,5 млрд. лет назад. Таким образом, он продолжался 1,5 млрд. лет. Его подразделяют на 4 эры:

  • эоархей
  • палеоархей
  • мезоархей
  • неоархей

Эоархей (4–3,6 млрд. лет) длился 400 млн. лет. Это период формирования земной коры. На планету падало огромное количество метеоритов. Это, так называемая, Поздняя тяжёлая бомбардировка. Именно в то время началось образование гидросферы. На Земле появилась вода. В большом количестве её могли занести кометы. Но до океанов было ещё далеко. Существовали отдельные водоёмы, а температура в них доходила до 90° по Цельсию. Атмосфера характеризовалась высоким содержанием углекислого газа и небольшим содержанием азота. Кислород отсутствовал. В конце этой эры развития Земли начал формироваться первый суперконтинент Ваальбара.

Палеоархей (3,6–3,2 млрд. лет) длился 400 млн. лет. В эту эру завершилось формирование твёрдого ядра Земли. Появилось сильное магнитное поле. Его напряжённость составляла половину нынешней. Следовательно, поверхность планеты получила защиту от солнечного ветра. На этот период приходятся и примитивные формы жизни в виде бактерий. Их остатки, возраст которых составляет 3,46 млрд. лет, были обнаружены в Австралии. Соответственно, стало увеличиваться содержание кислорода в атмосфере, обусловленное деятельностью живых организмов. Продолжалось формирование Ваальбара.

Мезоархей (3,2–2,8 млрд. лет) длился 400 млн. лет. Самым примечательным в нём являлось существование цианобактерий. Они способны к фотосинтезу и выделяют кислород. Завершилось формирование суперконтинента. К концу эры он раскололся. Имело место также падение огромного астероида. Кратер от него до сих пор существует на территории Гренландии.