Природные и синтетические полимеры. Синтетические полимеры Какие полимеры называют искусственными

Виды полимеризации

1. В основу классификации полимеризации могут быть положены различные признаки:

- число типов молекул мономеров:

- гомополимеризация - полимеризация одинаковых мономеров;

- сополимеризация - полимеризация двух и более разных мономеров.

2. Природа активного центра и механизм процесса :

- радикальная полимеризация - активными центрами являются свободные радикалы;

- ионная полимеризация - активные центры ионы или поляризованные молекулы;

3. Фазовое состояние мономеров :

- газофазная полимеризация;

- жидкофазная полимеризация;

- твердофазная полимеризация.

4. Структура области , в которой сосредоточены активные центры:

- объемная полимеризация - полимеризация во всем объёме мономера;

- фронтальная полимеризация - полимеризация в узком распространяющемся фронте;

- эмульсионная полимеризация - полимеризация на поверхности высокодиспергированных частиц мономера в эмульсии.

5. Способ инициирования :

- фотополимеризация;

- термическая полимеризация;

- радиационная полимеризация и др.

6. Структурные особенности полученного полимера :

Стереорегулярная полимеризация - полимеризация с образованием полимеров с упорядоченной пространственной структурой;

7. Технологические особенности полимеризации:

Полимеризация при высоком давлении и др.

8. Химическая природа мономеров:

Полимеризация олефинов и др.

В основе химических превращений полимеров лежит замена одних функциональных групп на другие, что проходит без изменения степени полимеризации.

Исторические данные

Полимеризация была открыта ещё в середине XIX века, практически одновременно с выделением первых способных к полимеризации мономеров (стирола, изопрена, винилхлорида, метакриловой кислоты и др.). Однако суть полимеризации как цепного процесса образования истинных химических связей между молекулами мономера была понята лишь в 20-30-е гг. XX века благодаря работам Г. Штаудингера, С. В. Лебедева, Б. В. Бызова, К. Циглера. В 1922 химик Штаудингер доказал, что полимеры представляют собой соединения, состоящие из больших молекул, атомы которых связаны между собой ковалентными связями.

Синтетические полимеры. Искусственные полимерные материалы

Человек давно использует природные полимерные материалы в своей жизни. Это кожа, меха, шерсть, шелк, хлопок и т.п., используемые для изготовления одежды, различные связующие (цемент, известь, глина), образующие при соответствующей обработке трехмерные полимерные тела, широко используемые как строительные материалы. Однако промышленное производство цепных полимеров началось в начале XX в., хотя предпосылки для этого создавались ранее.

Практически сразу же промышленное производство полимеров развивалось в двух направлениях – путем переработки природных органических полимеров в искусственные полимерные материалы и путем получения синтетических полимеров из органических низкомолекулярных соединений.

В первом случае крупнотоннажное производство базируется на целлюлозе. Первый полимерный материал из физически модифицированной целлюлозы – целлулоид – был получен еще в начале XX в. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят пленки, волокна, лакокрасочные материалы и загустители. Необходимо отметить, что развитие кино и фотографии оказалось возможным лишь благодаря появлению прозрачной пленки из нитроцеллюлозы.

Производство синтетических полимеров началось в 1906 г., когда Л. Бакеланд запатентовал так называемую бакелитовую смолу – товар конденсации фенола и формальдегида, превращающийся при нагревании в трехмерный полимер. В течение десятилетий он применялся для изготовления корпусов электротехнических приборов, аккумуляторов, телевизоров, розеток и т.п., а в настоящее время чаще используется как связующее и адгезивное вещество.

Эпохальным событием в мире полимеров явилось открытие в середине 50-х годов XX столетия и быстрое промышленное освоение Катализаторов Циглера–Натта, что привело к появлению полимерных материалов на основе полиолефинов и, прежде всего, полипропилена и полиэтилена низкого давления (до этого было освоено производство полиэтилена при давлении порядка 1000 атм.), а также стереорегулярных полимеров, способных к кристаллизации. Затем были внедрены в массовое производство полиуретаны – наиболее распространенные герметики, адгезивные и пористые мягкие материалы (поролон), а также полисилоксаны – элементорганические полимеры, обладающие более высокими по сравнению с органическими полимерами термостойкостью и эластичностью.

Список замыкают так называемые уникальные полимеры, синтезированные в 60-70 гг. XX в. К ним относятся ароматические полиамиды, полиимиды, полиэфиры, полиэфир-кетоны и др.; непременным атрибутом этих полимеров является наличие у них ароматических циклов и (или) ароматических конденсированных структур. Для них характерно сочетание выдающихся значений прочности и термостойкости.

Полиэтилен

Термопластичный полимер белого цвета. Полиэтилен - полимер этена (этилена).

В промышленности его получают полимеризацией этена при высоком давлении и низком или среднем давлении. Структура и свойства полиэтилена определяются способом его получения. Среднемассовая молекулярная масса наиболее распространённых марок 30-800 тыс.; степень кристалличности и плотность при 20 ?С составляют соответственно 50% и 0,918-0,930 г/см3 Для полиэтилена низкой плотности и 75-90% и 0,955-0,968 г/см3 для полиэтилена высокой плотности. С увеличением плотности возрастают твёрдость, модуль упругости при изгибе, предел текучести, химическая стойкость. Полиэтилен сочетает высокую прочность при растяжении (10-45 Мн/м2, или 100-450 кгс/см2) с эластичностью (относительное удлинение при разрыве 500-1000%). Он обладает хорошими электроизоляционными свойствами (например, тангенс угла диэлектрических потерь 2×10-4-4×10-4 при температурах от -120 до 120 ?C и частоте 10-50 кгц). Устойчив к действию щелочей любых концентраций, органических кислот, концентрированных соляной и плавиковой кислот; разрушается азотной кислотой, хлором и фтором; выше 80 C растворяется в алифатических и ароматических углеводородах и их галогенопроизводных; сравнительно стоек к радиоактивным излучениям; безвреден; интервал рабочих температур от -80 ¸ -120 до 60 ¸ 100 C.

Полиэтилен - один из самых дешёвых полимеров, сочетающий ценные свойства со способностью перерабатываться всеми известными для термопластов высокопроизводительными методами. Поэтому в мировом производстве полимеризационных пластиков полиэтилен занимает первое место.

Из полиэтилен изготовляют плёнки, трубы (в т. ч. для сточных вод и агрессивных жидкостей, магистральные газопроводы), профилированные предмета торговли, изоляцию для проводов и кабеля, ёмкости (бутыли, канистры, цистерны), гальванические ванны, санитарно-технические предмета торговли, волокна и др., широко применяемые в различных отраслях техники, сельском хозяйстве и в быту. Наибольшее распространение получил полиэтилен низкой плотности. Большое техническое значение имеют также продукты хлорирования и хлорсульфирования полиэтилен.

Полистирол

Полистирол - товар полимеризации стирола (винилбензола) относится к полимерам класса термопластов.

Фенильные группы препятствуют упорядоченному расположению макромолекул и формированию кристаллических образований. Это жёсткий, хрупкий, аморфный полимер с высокой степенью оптического светопропускания, невысокой механической прочностью, выпускается в виде прозрачных гранул цилиндрической формы. Полистирол имеет низкую плотность (1060 кг/M3), термическую стойкость (до 105 °С), усадка при литьевой переработке 0,4-0,8%. Полистирол обладает отличными диэлектрическими свойствами и неплохой морозостойкостью (до -40°C). Имеет невысокую химическую стойкость (кроме разбавленных кислот, спиртов и щелочей). Для улучшения свойств полистирола его модифицируют путём смешения с различными полимерами - подвергают сшиванию, таким образом получая сополимеры стирола.

Широкое применение полистирола (ПС) и пластиков на его основе базируется на его невысокой стоимости, простоте переработки и огромном ассортименте различных марок. Наиболее широкое применение (более 60% производства полистирольных пластиков) получили ударопрочные полистиролы, представляющие собой сополимеры стирола с бутадиеновым и дивинил-стирольным каучуком. В настоящее время созданы и другие многочисленные модификации сополимеров стирола.

Промышленное производство полистирола основано на радикальной полимеризации стирола. Различают 3 основных способа его получения:

Эмульсионный (ПСЭ). Наиболее устаревший метод получения, не получивший широкого применения в производстве. Эмульсионный полистирол получают в результате реакции полимеризации стирола в водном растворе щелочных веществ при температуре 85-95°C. Для этого метода требуются: стирол, вода, эмульгатор и инициатор полимеризации. Стирол предварительно очищают от ингибиторов: требутил-пирокатехина или гидрохинона. В качестве инициаторов реакции применяют водорастворимые соединения, двуокись водорода или персульфат калия. В качестве эмульгаторов применяют соли жирных кислот, щелочи (мыло), соли сульфокислот. Реактор наполняют водным раствором касторового масла и тщательного перемешивая вводят стирол и инициаторы полимеризации, после чего полученная смесь нагревается до 85-95С. Мономер, растворённый в мицелах мыла, начинает полимеризовываться, поступая из капель эмульсии. В результате чего образуются полимер-мономерные частицы. На стадии 20% полимеризации мицеллярное мыло расходуется на образование адсорбированных слоёв и процесс далее протекает внутри частиц полимера. Процесс заканчивается, когда содержание свободного стирола станет менее 0,5%. Далее эмульсия транспортируется из реактора на стадию осаждения с целью дальнейшего снижения остаточного мономера, для этого эмульсию коагулируют раствором поваренной соли и сушат, получая порошкообразную массу с размерами частиц до 0,1 мм. Остатки щелочных веществ влияют на качество полученного материала, поскольку полностью устранить посторонние примеси невозможно, а их наличие придаёт полимеру желтоватый оттенок. Данным методом можно получать полистирол с наибольшей молекулярной массой. Полистирол получаемый по данному методу имеет аббревиатуру - ПСЭ, которая периодически встречается в технической документации и старых учебниках по полимерным материалам.

Суспензионный (ПСС). Суспензионный метод полимеризации производится по периодической схеме в реакторах с мешалкой и теплоотводящей рубашкой. Стирол подготавливают, суспендируя его в химически чистой воде посредством применения стабилизаторов эмульсии (поливинилового спирта, полиметакрилата натрия, гидроокиси магния) и инициаторов полимеризации. Процесс полимеризации производится при постепенном повышении температуры (до 130°С) под давлением. Результатом является - получение суспензии из которой полистирол выделяют путём центрифугирования, затем его промывают и сушат. Данный метод получения полистирола также является устаревшим и наиболее пригоден для получения и сополимеров стирола. Данный метод в основном применяется в производстве пенополистирола.

Блочный или получаемый в массе (ПСМ). Различают две схемы производства: полной и неполной конверсии. Термическая полимеризацией в массе по непрерывной схеме представляет собой систему последовательно соединенных 2-3 колонных аппарата-реактора с мешалками. Полимеризацию проводят по-стадийно в среде бензола - сначала при температуре 80-100 °С, а затем стадией 100-220 °С. Реакция прекращается при степени превращения стирола в полистирол до 80-90% массы (при методе неполной конверсии степень полимеризации доводят до 50-60%). Не прореагировавший стирол-мономер удаляют из расплава полистирола вакуумом и понижают содержания остаточного стирола в полистироле до 0,01-0,05%, не прореагировавший мономер возвращается на полимеризацию. Полистирол, полученный блочным методом отличается высокой чистотой и стабильность параметров. Данная технология наиболее эффективна и практически не имеет отходов.

Поливинилхлорид

Поливинилхлорид - (ПВХ, полихлорвинил, вестолит, хосталит, виннол, корвик, сикрон, джеон, ниппеон, сумилит, луковил, хелвик, норвик и др.) пластмасса белого цвета, термопластичный полимер винилхлорида. Отличается химической стойкостью к щелочам, минеральным маслам, многим кислотам и растворителям. Не горит на воздухе, но обладает малой морозостойкостью (–15°С). Нагревостойкость: +65°С.

Молекулярная масса 10–150 тыс.; плотность - 1,35–1,43 г/см³. Температура стеклования 75–80 °С (для теплостойких марок до 105 °С), температура плавления - 150–220 °С. Трудногорюч. При температурах выше 110–120 °С склонен к разложению с выделением хлористого водорода HCl.

Растворяется в циклогексаноне, тетрагидрофуране (ТГФ), диметилформамиде (ДМФА), дихлорэтане, ограниченно - в бензоле, ацетоне. Не растворяется в воде, спиртах, углеводородах; стоек в растворах щелочей, кислот, солей.

Предел прочности при растяжении - 40–50 МПа, при изгибе - 80–120 МПа. Удельное электрическое сопротивление - 1012 - 1013 Ом·м.

Устойчив к действию влаги, кислот, щелочей, растворов солей, бензина, керосина, жиров, спиртов, обладает хорошими диэлектрическими свойствами.

Тангенс угла потерь порядка 0,01–0,05.

Получается суспензионной или эмульсионной полимеризацией винилхлорида, а также полимеризацией в массе.

Применяется для электроизоляции проводов и кабелей, производства листов, труб (преимущественно хлорированный поливинилхлорид), пленок, пленок для натяжных потолков, искусственных кож, поливинилхлоридного волокна, пенополивинилхлорида, оконных профилей, линолеума, обувных пластикатов, мебельной кромки и т.д.

Основной проблемой, связанной с использованием ПВХ, является сложность его утилизации - при сжигании образуются высокотоксичные хлорорганические соединения.

По истечении 10-ти лет использования включается обратная реакция, то есть материал самостоятельно начинает выделять хлорорганические соединения в окружающую среду. Современные технологии создают способы блокирования этого свойства ПВХ, но они пока малоэффективны.

Пластмассы


Пластма́ссы (пласти́ческие ма́ссы, пла́стики) - органические материалы, основой которых являются синтетические или природные высокомолекулярные соединения (полимеры). Исключительно широкое применение получили пластмассы на основе синтетических полимеров.

Название «пластмассы» означает, что эти материалы под действием нагревания и давления способны формироваться и сохранять после охлаждения или отвердения заданную форму. Процесс формования сопровождается переходом пластически деформируемого (вязкотекучего) состояния в стеклообразное. В зависимости от природы полимера и характера его перехода из вязкотекучего в стеклообразное состояние при формовании предметов торговли пластмассы делят на термопласты и реактопласты.

Производство синтетических пластмасс основано на реакциях полимеризации, поликонденсации или полиприсоединения низкомолекулярных исходных веществ, выделяемых из угля, черного золота или природного газа. При этом образуются высокомолекулярные связи с большим числом исходных молекул (приставка «поли-» от греческого «много», например этен-полиэтилен).

Основные механические характеристики пластмасс те же, что и для металлов.

Мебельные пластмассы. Пластик, который используют для производства мебели, получают путем пропитки бумаги термореактивными смолами. Производство бумаги является наиболее энерго- и капиталлоемким этапом во всем процессе производства пластика. Используется 2 типа бумаг: основой пластика является крафт-бумага (плотная и небеленая) и декоративная (для придания пластику рисунка). Смолы подразделяются на фенолформальдегидные, которые используются для пропитки крафт-бумаги, и меламиноформальдегидные, которые используются для пропитки декоративной бумаги. Меламиноформальдегидные смолы производят из карбамида, поэтому они стоят дороже.

Мебельный пластик состоит из нескольких слоев. Защитный слой - оверлей - практический прозрачный. Изготавливается из бумаги высокого качества, пропитывается меламиноформальдегидной смолой. Следующий слой - декоративный. Затем несколько слоев крафт-бумаги, которая является основой пластика. И последний слой - компенсирующий (крафт-бумага, пропитанная меламиноформальдегидными смолами). Этот слой присутствует только у американского мебельного пластика.

Готовый мебельный пластик представляет из себя прочные тонированные листы толщиной 1-3 мм. По свойствам он близок к гетинаксу. В частности, он не плавится от прикосновения жалом паяльника, и, строго говоря, не является пластической массой, так как не может быть отлит в горячем состоянии, хотя и поддается изменению формы листа при нагреве. Мебельный пластик широко использовался в XX веке для отделки салонов вагонов метро.

Пластмассы характеризуются малой плотностью (0,85-1,8 г/см³), чрезвычайно низкой электрической и тепловой проводимостью, не очень большой механической прочностью. При нагревании (часто с предварительным размягчением) они разлагаются. Не чувствительны к влажности, устойчивы к действию сильных кислот и оснований, отношение к органическим растворителям различное (в зависимости от химической природы полимера). Физиологически почти безвредны. Свойства пластмасс можно модифицировать методами сополимеризации или стереоспецифической полимеризации, путём сочетания различных пластмасс друг с другом или с другими материалами, такими как стеклянное волокно, текстильная ткань, введением наполнителей и красителей, пластификаторов, тепло- и светостабилизаторов, облучения и др., а также варьированием сырья, например использование соответствующих полиолов и диизоцианатов при получении полиуретанов.

Термопласты (термопластичные пластмассы) при нагреве расплавляются, а при охлаждении возвращаются в исходное состояние.

Реактопласты (термореактивные пластмассы) отличаются более высокими рабочими температурами, но при нагреве разрушаются и при последующем охлаждении не восстанавливают своих исходных свойств.

Твёрдость пластмасс определяется по Бринеллю при нагрузках 50-250 кгс на шарик диаметром 5 мм.

Теплостойкость по Мартенсу - температура, при которой пластмассовый брусок с размерами 120 × 15 × 10 мм, изгибаемый при постоянном моменте, создающем наибольшее напряжение изгиба на гранях 120 × 15 мм, равное 50 кгс/см², разрушится или изогнётся так, что укреплённый на конце образца рычаг длиной 210 мм переместится на 6 мм.

Теплостойкость по Вика - температура, при которой цилиндрический стержень диаметром 1,13 мм под действием груза массой 5 кг (для мягких пластмасс 1 кг) углубится в пластмассу на 1 мм.

Температура хрупкости (морозостойкость) - температура, при которой пластичный или эластичный материал при ударе может разрушиться хрупко.

Для придания особых свойств пластмассе в нее добавляют пластификаторы (силикон, дибутилфталат, ПЭГ и т.п.), антипирены (дифенилбутансульфокислота), антиоксиданты (трифенилфосфит, непредельные углеводороды).

Система маркировки пластика:

Для оказания помощи утилизации одноразовых предметов, в 1988 году союзом Пластмассовой Промышленности была разработана систему маркировки для всех видов пластика и идентификационные коды. Маркировка пластика состоит из 3-х стрелок в форме треугольника внутри которых находится цифра, обозначающая тип пластика:

PET или PETE - Полиэтилентерефталат. Обычно используется для бутылок минеральной воды, безалкогольных напитков и фруктовых соков, упаковка, блистеры, обивка. Такие пластики являются потенциально опасными для пищевого использования.

PEHD или HDPE - Полиэтилен высокой плотности. Некоторые бутылки, фляги, а также в более общем плане полу-жесткая упаковка. Считаются безопасными для пищевого использования.

ПВХ или PVC - Поливинилхлорид. Используется для труб, трубок, садовой мебели, в напольных покрытиях, для оконных профилей, жалюзи, бутылок моющих средств и клеенки. Материал является потенциально опасными для пищевого использования, поскольку может содержать диоксины, бисфенол А, ртуть, кадмий.

LDPE и PEBD - полиэтилен низкой плотности. Брезенты, мусорные мешки, пакеты, пленки и гибкие ёмкости. Считается безопасным для пищевого использования.

PP - Полипропилен. Используется в автопрома (оборудование, бамперы), при изготовлении игрушек, а также в пищевой промышленности, в основном при изготовлении упаковок. Считается безопасным для пищевого использования.

PS - Полистирол. Используется при изготовлении плит теплоизоляции зданий, пищевых упаковок, столовых приборов и чашек, коробок CD и прочих упаковок (пищевой плёнки и пеноматериалов), игрушек, посуды, ручек и так далее. Материал является потенциально опасным, особенно в случае горения, поскольку содержит стирол.

OTHER или О - Прочие. К этой группе относится любой другой пластик, который не может быть включен в предыдущие группы. Например сюда относится пластмасса, основанная на поликарбонате. Такие пластмассы являются потенциально токсичными, особенно те, в которых используется поликарбонат, и, основанные на бисфеноле А.

Полимеры

Цепочки молекул полипропилена.

Полимеры (греч. πολύ- - много; μέρος - часть) - неорганические и органические, аморфные и кристаллические вещества, получаемые путём многократного повторения различных групп атомов, называемых «мономерными звеньями», соединённых в длинные макромолекулы химическими или координационными связями. Полимер - это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико. Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются. Как правило, полимеры - вещества с молекулярной массой от нескольких тысяч до нескольких миллионов.

Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Ваальса, они называются термопласты, если с помощью химических связей - реактопласты. К линейным полимерам относится, например, целлюлоза, к разветвленным, например, амилопектин, есть полимеры со сложными пространственными трёхмерными структурами.

В строении полимера можно выделить мономерное звено - повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (-СН 2 -CHCl-) n , каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами.

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли- : поли этилен, поли пропилен, поли винилацетат и т. п.



Особенности

Особые механические свойства:

  • эластичность - способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);
  • малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);
  • способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).

Особенности растворов полимеров:

  • высокая вязкость раствора при малой концентрации полимера;
  • растворение полимера происходит через стадию набухания.

Особые химические свойства:

  • способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.).

Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают гибкостью.

Классификация

По химическому составу все полимеры подразделяются на органические , элементоорганические , неорганические .

  • Органические полимеры.
  • Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель - кремнийорганические соединения.

Следует отметить, что в технических материалах часто используют сочетания разных групп полимеров. Это композиционные материалы (например, стеклопластики).

По форме макромолекул полимеры делят на линейные, разветвленные (частный случай - звездообразные), ленточные, плоские, гребнеобразные, полимерные сетки и так далее.

Полимеры подразделяют по полярности (влияющей на растворимость в различных жидкостях). Полярность звеньев полимера определяется наличием в их составе диполей - молекул с разобщенным распределением положительных и отрицательных зарядов. В неполярных звеньях дипольные моменты связей атомов взаимно компенсируются. Полимеры, звенья которых обладают значительной полярностью, называют гидрофильными или полярными . Полимеры с неполярными звеньями - неполярными , гидрофобными . Полимеры, содержащие как полярные, так и неполярные звенья, называются амфифильными . Гомополимеры, каждое звено которых содержит как полярные, так и неполярные крупные группы, предложено называть амфифильными гомополимерами .

По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные . Термопластичные полимеры (полиэтилен, полипропилен, полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения.

Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды, белки и нуклеиновые кислоты, из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле. Считается, что решающим этапом в возникновении жизни на Земле явилось образование из простых органических молекул более сложных - высокомолекулярных (см. Химическая эволюция).

Типы

Синтетические полимеры. Искусственные полимерные материалы

Человек давно использует природные полимерные материалы в своей жизни. Это кожа, меха, шерсть, шёлк, хлопок и т. п., используемые для изготовления одежды, различные связующие (цемент, известь, глина), образующие при соответствующей обработке трёхмерные полимерные тела, широко используемые как строительные материалы. Однако промышленное производство цепных полимеров началось в начале XX в., хотя предпосылки для этого появились ранее.

Практически сразу же промышленное производство полимеров развивалось в двух направлениях - путём переработки природных органических полимеров в искусственные полимерные материалы и путём получения синтетических полимеров из органических низкомолекулярных соединений.

В первом случае крупнотоннажное производство базируется на целлюлозе. Первый полимерный материал из физически модифицированной целлюлозы - целлулоид - был получен ещё в начале XX в. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят плёнки, волокна, лакокрасочные материалы и загустители. Необходимо отметить, что развитие кино и фотографии оказалось возможным лишь благодаря появлению прозрачной плёнки из нитроцеллюлозы.

Производство синтетических полимеров началось в 1906 г., когда Л. Бакеланд запатентовал так называемую бакелитовую смолу - продукт конденсации фенола и формальдегида, превращающийся при нагревании в трёхмерный полимер. В течение десятилетий он применялся для изготовления корпусов электротехнических приборов, аккумуляторов, телевизоров, розеток и т. п., а в настоящее время чаще используется как связующее и адгезивное вещество.

Благодаря усилиям Генри Форда, перед Первой мировой войной началось бурное развитие автомобильной промышленности сначала на основе натурального, затем также и синтетического каучука. Производство последнего было освоено накануне Второй мировой войны в Советском Союзе, Англии, Германии и США. В эти же годы было освоено промышленное производство полистирола и поливинилхлорида, являющихся прекрасными электроизолирующими материалами, а также полиметилметакрилата - без органического стекла под названием «плексиглас» было бы невозможно массовое самолётостроение в годы войны.

После войны возобновилось производство полиамидного волокна и тканей (капрон, нейлон), начатое ещё до войны. В 50-х гг. XX в. было разработано полиэфирное волокно и освоено производство тканей на его основе под названием лавсан или полиэтилентерефталат. Полипропилен и нитрон - искусственная шерсть из полиакрилонитрила, - замыкают список синтетических волокон, которые использует современный человек для одежды и производственной деятельности. В первом случае эти волокна очень часто сочетаются с натуральными волокнами из целлюлозы или из белка (хлопок, шерсть, шёлк). Эпохальным событием в мире полимеров явилось открытие в середине 50-х годов XX столетия и быстрое промышленное освоение катализаторов Циглера-Натта, что привело к появлению полимерных материалов на основе полиолефинов и, прежде всего, полипропилена и полиэтилена низкого давления (до этого было освоено производство полиэтилена при давлении порядка 1000 атм.), а также стереорегулярных полимеров, способных к кристаллизации. Затем были внедрены в массовое производство полиуретаны - наиболее распространенные герметики, адгезивные и пористые мягкие материалы (поролон), а также полисилоксаны - элементорганические полимеры, обладающие более высокими по сравнению с органическими полимерами термостойкостью и эластичностью.

Список замыкают так называемые уникальные полимеры, синтезированные в 60-70 гг. XX в. К ним относятся ароматические полиамиды, полиимиды, полиэфиры, полиэфир-кетоны и др.; непременным атрибутом этих полимеров является наличие у них ароматических циклов и (или) ароматических конденсированных структур. Для них характерно сочетание выдающихся значений прочности и термостойкости.

Огнеупорные полимеры

Многие полимеры, такие как полиуретаны, полиэфирные и эпоксидные смолы, склонны к воспламенению, что зачастую недопустимо при практическом применении. Для предотвращения этого, применяются различные добавки или используются галогенированные полимеры. Галогенированные ненасыщенные полимеры синтезируют путем включения в конденсацию хлорированных или бромированных мономеров, например, гексахлорэндометилентетрагидрофталевой кислоты (ГХЭМТФК), дибромнеопентилгликоля или тетрабромфталевой кислоты. Главным недостатком таких полимеров является то, что при горении они способны выделять газы, вызывающие коррозию, что может губительно сказаться на располагающейся рядом электронике. Учитывая высокие требования экологической безопасности, особое внимание уделяется галоген-несодержащим компонентам: соединениям фосфора и гидроксидам металлов.

Действие гидроксида алюминия основано на том, что под высокотемпературным воздействием выделяется вода, препятствующая горению. Для достижения эффекта требуется добавлять большие количества гидроксида алюминия: по массе 4 части к одной части ненасыщенных полиэфирных смол.

Пирофосфат аммония действует по другому принципу: он вызывает обугливание, что вместе со стеклообразным слоем пирофосфатов даёт изоляцию пластика от кислорода, ингибируя распространение огня.

Новым перспективным наполнителем являются слоистые алюмосиликаты, производство которых создаётся в России.

Применение

Благодаря ценным свойствам полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве и медицине, автомобиле- и судостроении, авиастроении, в быту (текстильные и кожевенные изделия, посуда, клей и лаки, украшения и другие предметы). На основании высокомолекулярных соединений изготовляют резины, волокна, пластмассы, пленки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения.

Наука о полимерах

Наука о полимерах стала развиваться как самостоятельная область знания к началу Второй мировой войны и сформировалась как единое целое в 50-х гг. XX столетия, когда была осознана роль полимеров в развитии технического прогресса и жизнедеятельности биологических объектов. Она тесно связана с физикой, физической, коллоидной и органической химией и может рассматриваться как одна из базовых основ современной молекулярной биологии, объектами изучения которой являются биополимеры.

Полимеризация и поликонденсация

Реакцию образования полимера из мономера называют полимеризацией. В процессе полимеризации вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости или твердое. Реакция полимеризации не сопровождается отщеплением каких-либо низкомолекулярных побочных продуктов. При полимеризации полимер и мономер характеризуются одинаковым элементным составом.

Полимеризация соединений с двойными связями, как правило, протекает по цепному механизму. Для начала цепной реакции необходимо, чтобы в исходной инертной массе зародились активные частицы. В цепных реакциях одна частица вовлекает в реакцию тысячи неактивных молекул, образующих длинную цепь. Первичными активными центрами являются свободные радикалы и ионы.

Радикалы - это части молекулы, образующиеся при разрыве электронной пары и содержащие неспаренный электрон (например, метил CH 3 - , фенил C 6 H 6 -, этиловая группа C 2 H 5 - и т. д.). Образование первоначальных радикалов и ионов может происходить под действием теплоты, света, различных ионизирующих излучений, специально вводимых катализаторов.

Помимо реакции полимеризации полимеры можно получить поликонденсацией - реакцией, при которой происходит перегруппировка атомов полимеров и выделение из сферы реакции воды или других низкомолекулярных веществ.

Характеристики полимеров

Важнейшие характеристики полимеров - химический состав, молекулярная масса ММ и молекулярно-массовое распределение ММР, степень разветвленности и гибкости макромолекул, стереорегулярность (см. Стереорегулярные полимеры) и др. Свойства полимеров существенно зависят от этих характеристик.

Количество химических звеньев в макромолекуле определяет ее протяженность и называется степенью полимеризации n. Например, молекула полиэтилена (-СН 2 -СН 2 -)n состоит из n химических звеньев этилена СН 2 =СН 2 . Произведение молекулярной массы М химического звена на степень полимеризации представляет собой молекулярную массу ММ макромолекулы. В зависимости от значений М и n молекулярная масса полимеров может изменяться в весьма широких пределах от 3 . 10 2 до 2 . 10 6 единиц.

В зависимости от величины молекулярной массы макромолекул одного и того полимера условно различают:

Мономер - низкомолекулярный исходный продукт;

Олигомеры - полимеры с ММ < 540, представляют собой низкомолекулярный продукт полимеризации или поликонденсации. Свойства олигомеров существенно зависят от молекулярной массы и, следовательно, от степени полимеризации.

Полимеры имеют молекулярную массу 5 . 10 3 < ММ < 5 . 10 5 . К этой группе принадлежит абсолютное большинство разновидностей полимеров. Свойства полимеров от числа мономерных звеньев в цепи зависят значительно меньше, чем у олигомеров.

Сверхвысокомолекулярные полимеры имеют ММ > 5 . 10 5 .

Молекулярный уровень характеризует химическое строение макромолекул, в целом определяемое химической природой мономерных звеньев и типами межмономерных связей.

В отличие от простых веществ полимер состоит из множества макромолекул, молекулярная масса которых различается. Поэтому полимеры характеризуются средним значением ММ. Т. е. полимер полимолекулярен. В связи с этим при описании физико-химических свойств полимеров значение их молекулярной массы дается в сравнительно широких пределах. Так, например, для полиэтилена низкой плотности приводятся значения (1,9-4,8) . 10 4 . Молекулярно-массовое распределение (ММР) отражает неоднородность полимера по размерам цепей и, следовательно, по молекулярной массе составляющих его макромолекул. Чем ближе ММР к единице, тем однороднее по величине молекулы полимера.

Основные физические параметры полимеров (прочность, теплопроводность, дилатометрические характеристики, характеристические температуры) практически не зависят от молекулярной массы. Молекулярная масса полимеров влияет на реологические показатели их расплавов, на термодеформационные и ряд эксплуатационных свойств. Кроме того, она существенно зависит от способа получения полимеров, то есть от оборудования и технологии их синтеза.

По строению макромолекулы подразделяются на линейные, схематически обозначаемые -А-А-А-А-А-, (например, каучук натуральный); разветвленные, имеющие боковые ответвления (например, амилопектин); и сетчатые или сшитые, если соседние макромолекулы соединены поперечными химическими связями (например, отвержденные эпоксидные смолы). Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластическим деформациям.

Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям, способность в высокоэластическом состоянии набухать перед растворением; высокая вязкость растворов. Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул.

Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами, например поливинилхлорид, поликапроамид, целлюлоза. Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.

Физическая организация макромолекул полимеров формирует важнейшие понятия, определяющие доминантные особенности полимеров, а именно термопластичность и термореактивностъ.

Полимеры линейные и разветвленные образуют класс термопластических полимеров или термопластов, а пространственные - класс термореактивных полимеров или реактопластов.

Литература

  • Энциклопедии полимеров, т. 1 - 3, гл. ред. В. А. Каргин, М., 1972 - 77;
  • Махлис Ф. А., Федюкин Д. Л., Терминологический справочник по резине, М., 1989;
  • Кривошей В. Н., Тара из полимерных материалов, М.,1990;
  • Шефтель В. О., Вредные вещества в пластмассах, М.,1991;

Предисловие

Все виды полимерных материалов - это вещества, в которых каждая молекула представляет собой цепь из десятков или сотен тысяч последовательно соединенных одинаковых групп атомов, причем одна и та же группа атомов ритмически повторяется много раз.

Cодержание

К основным полимерным материалам относятся смолы и пластмассы. В зависимости от того, термопластичный это полимер или термореактивный, материал может либо размягчаться и затвердевать многократно, либо при однократном нагревании переходить в твердое состояние и навсегда утрачивать способность плавиться. Чаще всего используются такие современные полимерные материалы, как дисперсии, латексы и клеевые составы.

Что такое строительные полимерные материалы

Что такое полимерные материалы и как их используют в строительстве? Все виды полимерных материалов - это вещества, в которых каждая молекула представляет собой цепь из десятков или сотен тысяч последовательно соединенных одинаковых групп атомов, причем одна и та же группа атомов ритмически повторяется много раз.

Основные виды полимерных материалов делятся на термопластичные и термореактивные. Термопластичные полимеры способны многократно размягчаться и затвердевать при изменении температуры, а также легко набухать и растворяться в органических растворителях. К ним относятся полистирольные, полиэтиленовые и поливинилхлоридные (полихлорвиниловые) смолы и пластмассы.

Основное свойство термореактивных полимерных материалов – переход при нагревании в нерастворимое твердое состояние и безвозвратная утрата способности плавиться. К таким полимерам относятся фенолоформальдегидные и мочевиноформальдегидные, полиэфирные и эпоксидные смолы.

Отдельные виды полимерных материалов в строительстве под действием тепла, света и кислорода воздуха с течением времени изменяют свойства: теряют гибкость, эластичность, проще говоря, стареют.

Для предотвращения старения современных строительных полимерных материалов применяются специальные стабилизаторы (антистарители), представляющие собой различные металлоорганические соединения свинца, бария, кадмия и др. Например, в качестве стабилизатора применяется тинувин П.

Какие бывают полимерные материалы, и каковы их основные характеристики, вы узнаете на этой странице.

Полимерные материалы пластмассы и их свойства

Один из основных типов полимерных материалов – это пластмассы. Они представляют собой группу органических материалов, основу которых составляют синтетические или природные смолообразные высокомолекулярные вещества, способные при нагревании и давлении формоваться, устойчиво сохраняя приданную им форму.

Полимерные материалы пластмассы обладают хорошими теплоизоляционными и электроизоляционными качествами, коррозийной стойкостью и долговечностью. Средняя плотность пластмасс - 15-2200 кг/м3; предел прочности при сжатии - 120-160 МПа. Пластмассы наделены хорошими электро-теплоизоляционными свойствами, коррозийной стойкостью и долговечностью. Некоторые из них обладают прозрачностью и высокой клеящей способностью, а также имеют свойство образовывать тонкие пленки и защитные покрытия. Благодаря своим свойствам широкое применение эти полимерные материалы нашли в строительстве, главным образом в комбинации с вяжущими веществами, металлами и каменными материалами.

Пластмассы состоят из связующего вещества - полимера, наполнителя, пластификатора и ускорителя отверждения. При изготовлении цветных пластмасс также используются минеральные красители.

В качестве наполнителей при изготовлении этого типа полимерных материалов используются органические и минеральные порошки, асбестовые, древесные и стеклянные волокна, бумага, стеклянные и хлопчатобумажные ткани, древесный шпон, асбестовый картон и др. Наполнители не только снижают стоимость материала, но и улучшают отдельные свойства пластмасс: повышают твердость, прочность, стойкость к кислотам и теплостойкость. Они должны быть химически инертными, малолетучими и нетоксичными. Пластификаторами при изготовлении пластмасс служат цинковая кислота, стеарат алюминия и иные, которые придают материалу большую пластичность. Катализаторы (ускорители) применяются в пластмассах для ускорения отверждения. Примером катализатора могут служить известь или уротропин, которые применяются для отверждения фенолоформальдегидного полимера.

Синтетические полимерные материалы и их применение

По способу производства синтетические полимерные материалы подразделяются на два класса: класс А - полимеры, получаемые цепной полимеризацией; класс Б - полимеры, получаемые поликонденсацией и ступенчатой полимеризацией.

Процесс полимеризации представляет собой соединение одинаковых и разных молекул. Побочных продуктов при полимеризации не образуется.

Процесс поликонденсации представляет собой соединение большого количества одинаковых и различных полиреактивных молекул низкомолекулярных веществ, в результате чего образуется высокомолекулярное вещество. При процессе поликонденсации выделяются вода, хлористый водород, аммиак и другие вещества.

Кремнийорганические смолы - это особая группа высокомолекулярных соединений. Особенность этих полимерных строительных материалов состоит в том, что они обладают свойствами как органических, так и неорганических веществ.

Физические и механические характеристики этих полимерных материалов практически не зависят от колебаний температуры по сравнению с обычными смолами, к тому же они обладают высокой гидрофобностью и теплостойкостью. Кремнийорганические смолы служат для получения различных изделий, стойких к действию повышенных температур (400-500°С).

Основная область применения этих синтетических полимерных материалов – изготовление бетонов и растворов для повышения их долговечности. Также их применяют в виде защитных покрытий на природных и искусственных каменных материалах (бетоне, известняке, травертине, мраморе и т. д.). Пропитка оказывает защитное действие в течение 6-10 лет, после чего ее следует возобновить.

Для поверхностей пропитки изделий из природного камня и других строительных конструкций применяют гидрофобизирующие кремнийорганические жидкости (ГКЖ), которые перед употреблением растворяют органическими растворителями, а также водную 50%-ную эмульсию (молочно-белого цвета), которую перед употреблением смешивают с водой в соотношении 1:10.

Поливинилацетатная дисперсия (ПВА) - это продукт полимеризации винилацетата в водной среде в присутствии инициатора и защитного коллоида. Это вязкая жидкость белого цвета, однородная, без криков и посторонних включений.

ПВА в зависимости от вязкости изготавливается трех марок: Н - низковязкая, С - средневязкая, В - высоковязкая. Она применяется при изготовлении полимерцементных растворов, мастик, паст, которые используются при облицовочных работах.

Латекс синтетический СКС-65ГП - продукт совместной полимеризации бутадиена со стиролом в соотношении 35:65 (по массе) в водной эмульсии с применением в качестве эмульгатора некаля и натриевого мыла синтетических жирных кислот. Латекс СКС-65ГП используется при изготовлении полимербетонов, эмульсионных красок, мастик и паст, применяемых при облицовочных работах. Также латекс используется при нанесении различных покрытий.

Физико-химические свойства этого полимерного строительного материала латекс СКС-65ГП:

  • содержание сухого вещества, %, не менее 47;
  • содержание незаполимеризованного стирола, %, не более 0,08;
  • концентрация водородных ионов (pH), не менее 11;
  • поверхностное натяжение, дин/см2, не более 40;
  • вязкость, с - 11-15;
  • содержание золы, %, не более 1,5.

Латекс синтетический СКС-ЗОШР - продукт совместной полимеризации бутадиена со стиролом в водной эмульсии, применяется в качестве связующего или клеящего материала при облицовочных работах.

Физико-химические свойства латекса СКС-ЗОШР:

  • содержание сухого вещества, %, не менее 33;
  • температура желатинизации, °С, не выше 14;
  • содержание свободной щелочи, %, не более 0,15.

Характеристики полимерных клеящих материалов

Полимерные клеящие материалы выпускают в виде жидкостей порошков и пленок.

Жидкие клеи бывают двух типов. Первый тип клеевых составов представляет собой растворенные в органическом летучем растворителе (спирте или ацетоне) каучуки, смолы или производные целлюлозы. После испарения растворителя образуется твердое клеевое соединение. Второй тип клеевых составов - это водные растворы специально приготовленных для клеев смол. Такие растворы при правильном хранении не густеют в течение нескольких месяцев. Жидкие клеи содержат 40-70% твердого клеящего вещества.

Из жидких клеев самыми распространенными являются меламиноформальдегидные, фенолоформальдегидные, мочевиноформальдегидные, каучуковые, эпоксидные, поливинилацетатные, а также клеи с добавлением силиконов.

Клей КМЦ (натриевая соль карбоксиметилцеллюлозы) используется при изготовлении мастик и растворов, применяемых при .

Карбинольный клей (винилацетилен карболен) - это вязкая прозрачная жидкость светло-оранжевого цвета, обладающая высокой клеящей способностью. Поэтому его называют универсальным. Он способен склеивать различные материалы, даже такие, как бетон, камень, металл, дерево. Затвердевший карбинольный клей устойчив к воздействию масел, кислот, щелочей, бензина, ацетона и воды.

В качестве катализаторов для ускорения твердения карбинольного клея используются концентрированная азотная кислота или перекись бензоила. Последняя представляет собой взрывоопасный порошок, поэтому его следует хранить, оберегая от огня.

Карбинольный клей выпускается на основе карбинольного сиропа (100 мас.ч) двух составов: в 1-й добавляется в качестве отвердителя перекись бензоила (1-3 мас.ч.), во 2-й – концентрированную азотную кислоту (1-2 мас.ч.).

Карбинольный клей хранят при температуре 20°С и в темноте, так как под влиянием света он теряет клеящую способность.

Эпоксидный клей представляет собой прозрачную вязкую жидкость светло-коричневого цвета, обладающую высокой клеящейся способностью. Он применяется для склеивания камня, бетона, керамической плитк. Затвердевший шов эпоксидного клея устойчив к воздействию кислот, щелочей, растворителей, воды, а также к большим механическим нагрузкам. Отвердителями эпоксидной смолы служат полиэтиленполиамин или гексаметилендиамин, пластификатором – дибутилфтолат.

Синтетические полимеры

В полиграфии применяются разнообразные синтетические полимерные материалы: пластомеры (синтетические смолы и пластические массы); эластомеры (синтетический каучук и резина); краски и клеи; синтетические волокна и ткани; «свободные» пленки; фотополимеры.

Синтетические полимеры получают методами полимеризации, сополимеризации и поликонденсации. Эти процессы рассматриваются в курсе органической химии. Свойства синтетических полимеров зависят от их строения и молекулярной массы. Полимерные материалы с большей молекулярной массой характеризуются более высокой механической прочностью (на разрыв, изгиб, скручивание и пр.) и худшей растворимостью.

Характерной особенностью синтетических полимеров является полидисперсность - молекулы одного и того же полимера могут иметь разную величину, включая разное число структурных звеньев. Поэтому молекулярная масса полимера обозначает не истинную массу каждой молекулы, а лишь некоторое среднее ее значение.

При нагревании синтетические полимеры плавятся, а при охлаждении обычно приобретают аморфную структуру из­за очень большой вязкости расплава перед его затвердеванием. Однако синтетические полимеры могут приобретать и кристаллическую структуру. В этом состоянии у них более высокая температура плавления и они становятся значительно более прочными.

Синтетические полимеры делятся на термопластические, способные многократно переплавляться без заметного изменения свойств, и термореактивные, необратимо затвердевающие при более или менее продолжительном нагревании в результате протекания термохимических реакций.

Синтетические полимерные материалы по многим свойствам существенно превосходят черные и цветные металлы, древесину, стекло, требуют меньших капитальных затрат на организацию их производства и обходятся значительно дешевле.

Полиэтилен

Полиэтилен - полупрозрачный бесцветный очень прочный термопластичный полимер с хорошими диэлектрическими и антикоррозионными свойствами. Высокая прочность полиэтилена обусловлена его кристаллическим строением.

Полиэтилен изготавливается полимеризацией этилена при высоком или низком давлении. В первом случае полимеризация этилена происходит при давлении 2000 атмосфер и температуре 500 °C, во втором - при давлении и температуре, близким к нормальным (за счет применения специального катализатора).

Строение и свойства полиэтиленов высокого и низкого давления различны. Полиэтилен низкого давления имеет линейное строение и более высокую температуру плавления. Он прочнее полиэтилена высокого давления, для которого характерно разветвленное строение молекулы.

Полиэтиленовые пленки применяются как упаковочный материал. Низкомолекулярный полиэтилен представляет собой воскообразное вещество и используется как добавка к краскам. Сополимер этилена с винилацетатом - прекрасный материал для изготовления термопластичных переплетных клеев.

Полипропилен

Полипропилен - пластичный бесцветный прозрачный полимер, нерастворимый при комнатной температуре в органических растворителях, устойчивый к кислотам и щелочам, а также морозостойкий. Температура плавления - 160­170 °C. По прочности и стойкости к истиранию полипропилен превосходит полиэтилен.

Поливинилхлорид (винипласт)

Поливинилхлорид (-СН 2 -СНСl-) n - термопластичный твердый полимер, который начинает размягчаться при температуре 92­94 °С и плавиться при 170 °С. При введении пластификаторов, например 30­35% дибутилфталата, поливинилхлорид становится упругоэластичным и гибким. Такой материал называется пластикатом. Поливинилхлорид выпускается в виде пластин и пленок и применяется для изготовления плоских и ротационных стереотипов, дубликатов клише, книжных переплетов, а также текстовинитовых декельных покрышек.

Текстовинит полиграфический представляет собой хлопчатобумажную ткань с нанесенным на нее упругоэластичным слоем из поливинилхлорида, пигментов, наполнителей и пластификатора - дибутил­фталата. Текстовинит полиграфический вырабатывается толщиной 0,65 мм (при допуске ± 0,05 мм). Покрытие должно быть гладким, ровным, упругоэластичным, нелипким и немарким, устойчивым к действию воды, керосина, бензина, машинного масла и не должно иметь неприятного запаха.

Полистирол

Полистирол - твердый прозрачный бесцветный термопластический полимер, размягчающийся при 80 °С и плавящийся при 170 °С. В виде сополимера с акрилонитрилом применялся для отливки типографских шрифтов и пробельного материала. Сополимер, выпускаемый под маркой СНАК­15, содержит 85% стирола и 15% акрилонитрила, отличается высокой прочностью и устойчивостью к действию органических растворителей.

Полиакриламид

Полиакриламид - бесцветный прозрачный полимер, хорошо растворимый при энергичном перемешивании в воде. Полиакриламид применяется для быстрого осаждения пигментов в процессе их синтеза, улучшая их структуру и облегчая процесс изготовления полиграфических красок методом отбивки воды. Этот полимер также используется при изготовлении переплетных клеев, в производстве бумаги и как добавка в увлажняющие растворы для офсетной печати.

Поливинилацетат

Поливинилацетат - термопластичный, бесцветный, прозрачный и твердый полимер. Так же как и поливинилхлорид, он приобретает упругоэластичные свойства при введении пластификатора, например дибутилфталата. В виде хорошо пластифицированной водной дисперсии (поливинилацетатная эмульсия - ПВА) применяется в качестве переплетного клея. Спиртовой раствор поливинилацетата - высокоэластичный лак для лакирования оттисков - используется при припрессовке прозрачных пленок. Поливинил­ацетат применяется и при получении поливинилового спирта.

Винипроз

Винипроз - прозрачный, слегка желтоватый сополимер винилхлорида и метилметакрилата с добавкой стабилизатора - стеарата алюминия. Выпускается в виде прочных прозрачных пластин, которые могут быть гладкими или зернеными. Винипроз используется в качестве матричного материала при изготовлении гальваностереотипов и как материал для монтажа диапозитивов и негативов.

Поливиниловый спирт

Поливиниловый спирт (-СН 2 -СНОН-) n - полимер, хорошо растворимый в воде и в высших спиртах (в этиловом спирте нерастворим). Получается омылением поливинил­ацетата, поскольку мономер - виниловый спирт (СН 2 = СНОН) не существует в свободном состоянии. Еще в 1885 году М.Г.Кучеров пытался получить виниловый спирт присоединением воды к ацетилену, но вместо него получил уксусный альдегид.

Бесцветные клейкие водные растворы поливинилового спирта, очувствленные бихроматом аммония, применялись в качестве копировальных растворов при фотомеханическом изготовлении форм высокой и офсетной печати.

Поликарбонат

Поликарбонат - термопластичный прозрачный бесцветный полимер кристаллического строения. Синтезируется поликонденсацией дифенилолпропана (бифенола А) и хлорангидрида угольной кислоты (фосгена).

Поликарбонат имеет очень высокую температуру плавления (выше 240 °C), а по механической прочности и устойчивости к истиранию превосходит многие металлы и сплавы. Поэтому этот материал используется как заменитель металлов и сплавов при изготовлении силовых деталей в машиностроении.

Феноло-альдегидные смолы

При взаимодействии фенолов с альдегидами, в зависимости от условий реакции, образуются спирто­ или маслорастворимые смолы. Спирторастворимые феноло­альдегидные смолы могут быть термопластичными или термореактивными - в зависимости от соотношения фенола и альдегида и от выбора катализатора.

Если на одну молекулу фенола приходится по одной молекуле альдегида (при кислом катализаторе), получаются термопластичные смолы линейного строения. При этом сначала образуются фенолоспирты, а затем, при их поликонденсации, - спирторастворимая смола линейного строения. Спирторастворимую феноло­альдегидную термопластичную смолу «Идитол» применяют для изготовления спиртовых лаков. Однако такие лаки не светопрочны и заметно темнеют со временем.

Если на одну молекулу фенола приходится две и более молекул альдегида (при щелочном катализаторе), то получаются спирторастворимые термореактивные смолы. В этом случае при реакции сперва образуются двухатомные фенолоспирты (метилольные группы находятся в орто­ и пара­положениях по отношению к фенольному гидроксилу), а затем - молекулярные цепи смолы пространственного строения. Термореактивные смолы применяются для изготовления термореактивных пластических масс, например прессовочных порошков, текстолита, гетинакса, а также бакелитового лака.

Маслорастворимые феноло­альдегидные смолы используются в производстве печатных красок.

Полиамиды

Полиамиды - это чрезвычайно прочные, упругоэластичные бесцветные прозрачные полимеры, которые по своему химическому строению наиболее близки к белкам, в частности к натуральному шелку. Полиамиды применяются для изготовления синтетических волокон: анида (нейлона) и капрона (перлона), а также для прессования многих деталей в машиностроении. Температура плавления капрона около 300 °C, нейлона - 325 °C, при этом нейлон прочнее капрона.

Капрон получается полимеризацией капролактама. Использование капрона в быту общеизвестно. В полиграфии капроновое волокно применяется для сшивания книг и брошюр. Специальным капроновым полотном из моноволокна затягивают декели ротационных печатных машин для устранения отмарывания краски при двусторонней печати.

Некоторые виды спирто­ и водорастворимых полиамидов отвердевают (задубливаются) под действием ультрафиолетового излучения. Они используются при изготовлении фотополимерных печатных форм.

Спирторастворимый смешанный полиамид синтезируется из гексаметилендиамина, капролактама, себациновой и адипиновой дикарбоновых кислот. Водорастворимый сополиамид синтезируется из пиперазина, этилендигликолевой и адипиновой кислот или из пиперазина, гексаметилендиамина, этиленгликолевой и адипиновой дикарбоновых кислот. Оба эти сополиамида также применяются для изготовления фотополимерных печатных форм.

Полиуретаны

Полиуретаны - полимеры, строение которых напоминает полиамиды. В полиграфии используются при изготовлении красочных валиков.

Алкидные полимеры

Алкидные полимеры, получаемые из многоатомных спиртов и декарбоновых кислот, применяются главным образом как связующие полиграфических красок.

Особым видом алкидных полимеров является полиэтилентерефталат (терилен) - очень прочный, прозрачный, упругоэластичный, термопластичный полимер, получаемый из гликоля и терефталевой кислоты. Этот материал используется при изготовлении синтетического волокна лавсана. Лавсан, как заменитель шерсти, применяется не только для получения высокосортных тканей, но и как волокнистый полуфабрикат в производстве бумаги.

Полиэтилентерефталатные прозрачные пленки толщиной 12­20 мкм служат для изготовления подложек формных и фотоматериалов, а также для ламинирования обложек и переплетных крышек.

Фотополимеры

Фотополимеры - высокомолекулярные органические вещества, например водо­ и спирторастворимые смешанные полиамиды, сложные кислые эфиры целлюлозы (ацето­фталаты или ацетосукцинаты), молекулярные цепи которых при действии ультрафиолетового облучения сшиваются между собой специально подобранными непредельными мономерами в присутствии инициатора полимеризации - бензоина или его производных.

Фотополимерные композиции после их нанесения на подложку и высыхания становятся пригодными для негативного копирования при ультрафиолетовом облучении и последующего получения рельефа путем вымывания спиртами или щелочными водными растворами.

Полиамидные и эфироцеллюлозные фотополимерные формы высокой печати отличаются высокой разрешающей способностью и большой тиражестойкостью, доходящей до миллиона оттисков. Они почти не требуют приправки из­за высоких упругоэластических свойств.

Синтетический каучук

В настоящее время выпускается широкий ассортимент синтетического каучука общего и специального назначения. Из каучуков общего назначения получают резину для обуви, грелок, губок, игрушек и деталей машин, эксплуатируемых в обычных условиях. К таким каучукам относятся бутадиеновый, изопреновый, бутадиен­стирольный и некоторые другие виды каучука. Каучуки специального назначения обладают специальными свойствами, например стойкостью к воздействию нефтяных масел и бензина или кислот и щелочей, морозостойкостью, повышенной механической прочностью и т.п. К специальным видам каучуков относятся: хлоропреновый, нитрильный, силиконовый, фторкаучук и др.

Пластические массы

Пластические массы - материалы на основе природных или синтетических полимеров, способные под влиянием нагревания и давления формоваться и затем устойчиво сохранять (после охлаждения или отвердевания при нагреве) приданную им форму. Изделия из пластических масс получают прессованием или литьем под давлением в стальных пресс­формах.

Для получения пластической массы свойства полимера, как правило, корректируют в нужном направлении. Для повышения прочности и снижения стоимости пластической массы вводится наполнитель (древесная мука, хлопковые очесы, стеклянное волокно, асбестовый порошок, двуокись кремния - аэросил и др.), для устранения хрупкости - пластификаторы, например дибутилфталат, трикрезилфосфат и др., для придания цвета - пигменты, для облегчения заполнения гнезда пресс­формы и извлечения из него изделия - смазки и т.д.

Термопластические пластмассы делают из полимеров линейного строения, не имеющих химически активных функциональных групп. Термореактивные пластические массы обязательно содержат полимеры, имеющие функциональные группы, проявляющие свою химическую активность при более или менее продолжительном нагревании, в результате протекания химической реакции поликонденсации. Изделия из термопластических масс могут многократно переплавляться, а из термореактивных – нет.

Пластические массы имеют ряд ценных свойств:

  • низкую плотность (в 5­8 раз легче стали);
  • достаточную механическую прочность;
  • хорошие диэлектрические свойства;
  • высокую химическую стойкость (в том числе антикоррозийность);
  • меньшую стоимость, чем аналогичные по свойствам металлы и сплавы.

В полиграфии пластические массы нашли широкое применение для изготовления красочных валиков, книжных переплетов, стереотипов и т.п.

Копировальные слои

Копировальные слои - это светочувствительные полимерные слои, применяемые при копировании негативного или позитивного изображения на формные пластины. Широкое применение нашли поливинилспиртовые и ортохинондиазидные копировальные слои.

Поливинилспиртовые копировальные слои представляют собой 7­процентные водные растворы поливинилового спирта, очувствленные 3% бихромата аммония (рассчитывая на абсолютно сухую массу поливинилового спирта). В процессе негативного копирования под действием интенсивного облучения ксеноновыми лампами молекулярные цепи поливинилового спирта сшиваются между собой (задубливаются) атомами трехвалентного хрома и вследствие этого теряют способность растворяться в воде. После экспозиции незадубленные участки поливинил­спиртового копировального слоя вымываются водой. Получившееся изображение закрепляют путем химической и термической обработки.

Ортохинондиазиды и феноло­альдегидные смолы, растворенные в органическом растворителе, наносятся на поверхность металлических пластин при изготовлении формных материалов для офсетной и высокой печати. Позитивное копирование изображения осуществляется под действием УФ­излучения. Ультрафиолетовые лучи разрушают ортохинондиазиды, а продукты разрушения вымываются щелочным проявителем. Те участки ортохинондиазидного копировального слоя, на которые не действовали ультрафиолетовые лучи, остаются нерастворимыми в щелочном проявителе.

Конечно, перечисленными примерами применение полимерных материалов полиграфии не исчерпывается. Более того, можно утверждать, что в полиграфии в той или иной мере используются практически все существующие в настоящее время полимеры.

Полимеры – это органические и неорганические вещества, которые подразделяются на различный типы и виды. Что представляют из себя полимеры, и какова их классификация?

Общая характеристика полимеров

Полимерами называют высокомолекулярные вещества, молекулы которых состоят из повторяющихся структурных звеньев, связанных с друг другом химической связью. Полимеры могут быть органическими и неорганическими, аморфными или кристаллическими веществами. В полимерах всегда находится большое количество мономерных звеньев, если это количество слишком мало, то это уже не полимер, а олигомер. Количество звеньев считается достаточным, если при добавлении нового мономерного звена свойства не изменяются.

Рис. 1. Полимер структура.

Вещества, из которых получают полимеры, называются мономерами.

Молекулы полимеров могут иметь линейную, разветвленную или трехмерную структуру. Молекулярный вес обычных полимеров колеблется от 10000 до 1000000.

Реакция полимеризации характерна для многих органических веществ, в которых имеются двойные или тройные связи.

Например: реакция образования полиэтилена:

nCH 2 =CH 2 —> [-CH 2 -CH 2 -]n

где n – число молекул мономера, взаимно соединенных в процессе полимеризации, или степень полимеризации.

Полиэтилен получают при высокой температуре и высоком давлении. Полиэтилен химически устойчив, механически прочен и поэтому широко применяется при изготовлении оборудования в различных отраслях промышленности. Он обладает высокими электроизоляционными свойствами, а также используется в качестве упаковки продуктов.

Рис. 2. Вещество полиэтилен.

Структурные звенья – многократно повторяющиеся в макромолекуле группы атомов.

Виды полимеров

По своему происхождению полимеры можно разделить на три типа:

  • природные . Природные или натуральные полимеры можно встретить в природе в естественных условиях. К этой группе относятся, например, янтарь, шелк, каучук, крахмал.

Рис. 3. Каучук.

  • синтетические . Синтетические полимеры получают в лабораторных условиях, синтезирует их человек. К таким полимерам относятся ПВХ, полиэтилен, полипропилен, полиуретан. эти вещества не имеют ни какого отношения к природе.
  • искусственные . Искусственные полимеры отличаются от синтетических тем, что они синтезированы хоть и в лабораторных условиях, но на основе природных полимеров. К искусственным полимерам относится целлулоид, ацетатцеллюлоза, нитроцеллюлоза.

С точки зрения химической природы полимеры делятся на органические, неорганические и элементоорганические. Большая часть всех известных полимеров являются органическими. К ним относятся все синтетические полимеры. Основу веществ неорганической природы составляют такие элементы, как S, O, P, H и другие. Такие полимеры не бывают эластичными и не образуют макроцепей. Сюда относятся полисиланы, поликремниевые кислоты, полигерманы. К полимерам с элемнтоорганической природой относится смесь как органических, так и неорганических полимеров. Главная цепь – всегда неорганическая, боковые – органические. Примерами полимеров могут служить полисилоксаны, поликарбоксилаты, полиорганоциклофосфазены.

Все полимеры могут находится в разных агрегатных состояниях. Они могут быть жидкостями (смазки, лаки, клеи, краски), эластичными материалами (резина, силикон, поролон), а также твердыми пластмассами (полиэтилен, полипропилен).