Географическая оболочка, её свойства и целостность. Характеристика географической оболочки земли Особенности географической оболочки

Географическая оболочка – это цельная оболочка Земли, где ее составляющие (верхняя часть литосферы, нижняя часть атмосферы, гидросфера и биосфера) тесно взаимодействуют, обмениваясь веществом и энергией. Географическая оболочка имеет сложный состав и строение. Ее изучением занимается физическая география .

Верхней границей географической оболочки является стратопауза, до нее проявляется тепловое влияние земной поверхности на атмосферные процессы. Нижней границей географической оболочки считают подножие стратисферы в литосфере, то есть верхнюю зону земной коры. Так, географическая оболочка включает всю гидросферу, всю биосферу, нижнюю часть атмосферы и верхнюю литосферы. Наибольшая толщина географической оболочки по вертикали достигает 40 км.

Географическая оболочка Земли образуется под влиянием земных и космических процессов. В ней заключены различные виды свободной энергии. Вещество имеется в любых агрегатных состояниях, причем степень агрегированности вещества разнообразна – от свободных элементарных частиц до химических веществ и сложных биологических организмов. Притекающее от Солнца тепло аккумулируется, а все природные процессы в географической оболочке происходят за счет лучистой энергии Солнца и внутренней энергии нашей планеты. В данной оболочке развивается человеческое общество, черпающее ресурсы для своей жизнедеятельности из географической оболочки и воздействующее на нее как положительно, так и отрицательно.

Элементы, свойства

Главные вещественные элементы географической оболочки – горные породы, составляющие земную кору, воздушные и водные массы, почвы и биоценозы. Ледяные массивы играют большую роль в северных широтах и высокогорьях. Данные составляющие оболочку элементы образуют различные комбинации. Форма той или иной комбинации определяется количеством входящих компонентов и их внутренними видоизменениями, а также характером их взаимовлияний.

Географическая оболочка имеет ряд важных свойств. Целостность ее обеспечивается, благодаря постоянному обмену веществ и энергии между ее составляющими. А взаимодействие всех компонентов связывает их в одну материальную систему, в которой изменение любого элемента провоцирует изменение и остальных звеньев.

В географической оболочке непрерывно осуществляется круговорот веществ. При этом одни и те же явления и процессы многократно повторяются. Их общая эффективность держится на высоком уровне, несмотря на ограниченное количество исходных веществ. Все эти процессы отличаются по сложности и структруре. Некоторые являются механическими явлениями, например, морские течения, ветра, другие сопровождаются переходом веществ из одного агрегатного состояния в другое, к примеру, круговорот воды в природе, может происходить биологическая трансформация веществ, как при биологическом круговороте.

Следует отметить повторяемость различных процессов в географической оболочке во времени, то есть определенную ритмику. В ее основе лежат астрономические и геологические причины. Различают суточную ритмику (день-ночь), годовую (времена года), внутривековую (циклы в 25-50 лет), сверхвековую, геологическую (каледонский, альпийский, герцинский циклы длительностью по 200-230 млн лет).

Географическую оболочку можно рассматривать как целостную непрерывно развивающуюся систему под действием экзогенных и эндогенных факторов. Вследствие этого постоянного развития происходит территориальная дифференциация поверхности суши, морского и океанического дна (геокомплексы, ландшафты), выражена полярная асимметрия, проявляющаяся существенными отличиями природы географической оболочки в южном и северном полушариях.

Похожие материалы:

Введение

1. Географическая оболочка как материальная система, ее границы, строение и качественные отличия от других земных оболочек

2. Круговорот вещества и энергии в географической оболочке

3. Основные закономерности географической оболочки: единство и целостность системы, ритмичность явлений, зональность, азональность

4. Дифференциация географической оболочки. Географические пояса и природные зоны

5. Высотная поясность гор в разных географических поясах

6. Физико-географическое районирование как одна из важнейших проблем физической географии. Система таксономических единиц в физической географии

Географическая оболочка Земли (синонимы: природно-территориальные комплексы, геосистемы, географические ландшафты, эпигеосфера) - сфера взаимопроникновения и взаимодействия литосферы, атмосферы, гидросферы и биосферы. Обладает сложной пространственной дифференциацией. Вертикальная мощность географической оболочки десятки километров. Целостность географической оболочки определяется непрерывным энерго- и массообменом между сушей и атмосферой, Мировым океаном и организмами. Природные процессы в географической оболочке осуществляются за счет лучистой энергии Солнца и внутренней энергии Земли. В пределах географической оболочки возникло и развивается человечество, черпающее из оболочки ресурсы для своего существования и воздействующее на нее.

Географическая оболочка впервые была определена П. И. Броуновым еще в 1910 г. как “наружная оболочка Земли”. Это наиболее сложная часть нашей планеты, где соприкасаются и взаимопроникают атмосфера, гидросфера и литосфера. Только здесь возможно одновременное и устойчивое существование вещества в твердом, жидком и газообразном состояниях. В этой оболочке происходит поглощение, превращение и накопление лучистой энергии Солнца; только в ее пределах стало возможным возникновение и распространение жизни, которая, в свою очередь, явилась мощным фактором дальнейшего преобразования и усложнения эпигеосферы.

Географической оболочке свойственны целостность, обусловленная связями между её компонентами, и неравномерность развития во времени и пространстве.

Неравномерность развития во времени выражается в присущих этой оболочке направленных ритмичных (периодических - суточных, месячных, сезонных, годовых и т.п.) и неритмичных (эпизодических) изменениях. Как следствие этих процессов формируются разновозрастность отдельных участков географической оболочки, унаследованность хода природных процессов, сохранение реликтовых черт в существующих ландшафтах. Знание основных закономерностей развития географической оболочки позволяет во многих случаях прогнозировать природные процессы.

Учение о географических системах (геосистемах) является одним из главных фундаментальных достижений географической науки. Оно по-прежнему активно продолжает разрабатываться и обсуждаться. Поскольку это учение имеет не только глубокий теоретический смысл в качестве ключевого базиса для целенаправленного накопления и систематизации фактического материала с целью получения нового знания. Велика и его практическая значимость, так как именно такой системный подход к рассмотрению инфраструктуры географических объектов лежит в основе географического районирования территорий, без которого невозможно выявлять и решать ни локально, а тем более глобально, какие-либо проблемы, касающиеся в той или иной мере взаимодействия человека, общества и природы: ни экологические, ни природопользования, ни вообще оптимизации взаимоотношений человечества и природной среды.

Целью контрольной работы является рассмотрение географической оболочки в ракурсе современных представлений. Для достижения цели работы следует наметить и решить ряд задач, основными из которых будут являться:

1 рассмотрение географической оболочки как материальной системы;

2 рассмотрение основных закономерностей географической оболочки;

3 определение причин дифференциации географической оболочки;

4 рассмотрение физико-географического районирования и определение системы таксономических единиц в физической географии.


Динамика географической оболочки всецело зависит от энергетики земных недр в зоне внешнего ядра и астеносферы и от энергетики Солнца. Определенную роль играют также приливные взаимодействия системы Земля – Луна.

Проекция внутрипланетарных процессов на земную поверхность и последующее взаимодействие их с солнечным излучением в конечном счете отражается в формировании главных компонентов географической оболочки верхов земной коры, рельефа, гидросферы, атмосферы и биосферы. Современное состояние географической оболочки – результат ее длительной эволюции, начавшейся с возникновения планеты Земля.

Ученые выделяют три этапа развития географической оболочки: первый, самый продолжительный (около 3 млрд. лет) , характеризовался существованием простейших организмов; второй этап продолжался около 600 млн. лет и ознаменовался появлением высших форм живых организмов; третий этап - современный. Он начался около 40 тыс. лет назад. Его особенность в том, что человек все активнее начинает влиять на развитие географической оболочки, причем, к сожалению, негативно (разрушение озонового слоя и др.).

Географическая оболочка характеризуется сложным составом и строением. Основные вещественные компоненты географической оболочки - это слагающие земную кору горные породы (с их формой - рельефом), воздушные массы, водные скопления, почвенный покров и биоценозы; в полярных широтах и высокогорьях существенна роль скоплений льда. Основные энергетические компоненты - гравитационная энергия, внутреннее тепло планеты, лучистая энергия Солнца и энергия космических лучей. При всей ограниченности набора компонентов сочетания их могут быть весьма многообразными; это зависит и от числа входящих в сочетание слагаемых и от их внутренних вариаций (поскольку каждый компонент - это тоже очень сложная природная совокупность), а главное - от характера их взаимодействия и взаимосвязей, т. е. от географической структуры.

А.А. Григорьев проводил верхний предел географической оболочки (ГО) на высоте 20-26 км над уровнем моря, в стратосфере, ниже слоя максимальной концентрации озона. Ультрафиолетовая радиация, губительная для живого, перехватывается озоновым экраном.

Атмосферный озон образуется в основном выше 25 км. В более низкие слои он поступает благодаря турбулентному перемешиванию воздуха и вертикальных движений воздушных масс. Плотность O 3 мала вблизи земной поверхности и в тропосфере. Его максимум наблюдается на высотах 20-26 км. Общее содержание озона X в вертикальном столбе воздуха колеблется от 1 до 6 мм, если его привести к нормальному давлению (1013, 2мбар) при t = 0 o C. Величину X называют приведённой толщиной слоя озона или общим количеством озона.

Ниже границы озонового экрана наблюдается движение воздуха, обусловленное взаимодействием атмосферы с сушей и океаном. Нижняя граница географической оболочки, по Григорьеву, проходит там, где прекращают действовать тектонические силы, то есть на глубине 100-120 км от поверхности литосферы, по верхней части подкорового слоя, который влияет в сильной степени на формирование рельефа.

С.В. Калесник помещает верхнюю границу Г.О. так же, как и А.А. Григорьев, на уровне озонового экрана, а нижнюю - на уровне залегания очагов обычных землетрясений, то есть на глубине не свыше 40-45 км и не менее 15-20 км. Эта глубина - так называемая зона гипергенеза (греч. гипер - над, сверху, гeнезис - происхождение). Это зона осадочных пород, возникающих в процессе выветривания, изменения магматических и метаморфических пород, имеющих первичное происхождение.

От этих представлений о границах ГО отличаются взгляды Д.Л. Арманда. Д.Л.Арманд в состав географической сферы включает тропосферу, гидросферу и всю земную кору (силикатную сферу геохимиков), находящуюся под океанами на глубине 8-18 км и под высокими горами на глубине 49-77 км. Кроме собственно географической сферы, Д.Л.Арманд предлагает различать "Большую Географическую Сферу", включая в неё стратосферу, простирающуюся на высоту до 80 км над океаном, и эклогитовую сферу или симу, то есть всю толщину литосферы, с нижним горизонтом которой (700-1000 км) связаны глубокофокусные землетрясения.

21.1. Понятие о географической оболочке

Географическая оболочка – целостная непрерывная приповерхностная часть Земли, в пределах которой соприкасаются и взаимодействуют литосфера, гидросфера, атмосфера и живое вещество. Это наиболее сложная и разнообразная материальная система нашей планеты. Географическая оболочка включает в себя целиком гидросферу, нижний слой атмосферы, верхнюю часть литосферы и биосферу, которые являются ее структурными частями.

Географическая оболочка не имеет четких границ, поэтому ученые проводят их по-разному. Обычно за верхнюю границу принимают озоновый экран, расположенный на высоте около 25– 30 км, где задерживается большая часть ультрафиолетовой солнечной радиации, которая губительно действует на живые организмы. В то же время основные процессы, определяющие погоду и климат, а следовательно, формирование ландшафтов, протекают в тропосфере, высота которой изменяется по широтам от 16–18 км у экватора до 8 км над полюсами. Нижней границей на суше чаще всего считают подошву коры выветривания. Эта часть земной поверхности подвержена наиболее сильным изменениям под воздействием атмосферы, гидросферы и живых организмов. Ее максимальная мощность около одного километра. Таким образом, общая мощность географической оболочки на суше составляет около 30 км. В океане нижней границей географической оболочки считают его дно.

Следует, однако, заметить, что в отношении положения нижней границы географической оболочки среди ученых существуют наибольшие расхождения. Можно привести пять-шесть точек зрения на этот вопрос с соответствующими обоснованиями. При этом границу проводят на глубинах от нескольких сотен метров до десятков и даже сотен километров, причем по-разному в пределах материков и океанов, а также различных участков материков.

Нет единства и в отношении названия географической оболочки. Для ее обозначения были предложены следующие термины: ландшафтная оболочка или сфера, географическая сфера или среда, биогеносфера, эпигеосфера и ряд других. Однако в настоящее время большинство географов придерживается приведенных нами названий и границ географической оболочки.

Представление о географической оболочке как об особом природном образовании было сформулировано в науке в XX столетии. Главная заслуга в разработке этого представления принадлежит академику А. А. Григорьеву. Им же были раскрыты и основные особенности географической оболочки, которые сводятся к следующему:

    Географической оболочке свойственно по сравнению с недрами Земли и остальной частью атмосферы большее разнообразие вещественного состава, а также поступающих в неевидов энергии и форм их преобразования.

    Вещество в географической оболочке находится в трех агрегатных состояниях (за ее пределами преобладает одно какое-либо состояние вещества).

    Все процессы здесь протекают за счет как солнечных, так и внутриземных источников энергии (за пределами географической оболочки – в основном за счет одного из них), причем солнечная энергия абсолютно преобладает.

    Вещество в географической оболочке обладает широким диапазоном физических характеристик (плотность, теплопроводность, теплоемкость и др.). Только здесь есть жизнь. Географическая оболочка – арена жизни и деятельности человека.

5. Общим процессом, связывающим сферы, составляющие географическую оболочку, является перемещение вещества и энергии, которое совершается в виде круговоротов вещества и в изменениях составляющих балансов энергии. Все круговороты вещества происходят с различной скоростью и на различном уровне организации вещества (макроуровне, микроуровнях фазовых переходов и химических превращений). Часть энергии, поступающей в географическую оболочку, консервируется в ней, другая часть в процессе круговорота веществ уходит за пределы планеты, предварительно испытав ряд преобразований.

Географическая оболочка состоит из компонентов. Это определенные материальные образования: горные породы, вода, воздух, растения, животные, почвы. Компоненты различаются по физическому состоянию (твердое, жидкое, газообразное), уровню организации (неживое, живое, биокосное – сочетание живого и неживого, к которому относится почва), химическому составу, а также по степени активности. По последнему критерию компоненты подразделяют на устойчивые (инертные) – горные породы и почвы, мобильные – вода и воздух и активные – живое вещество.

Иногда компонентами географической оболочки считают частные оболочки – литосферу, атмосферу, гидросферу и биосферу. Это не совсем правильное представление, ибо не вся литосфера и атмосфера входят в состав географической оболочки, а биосфера пространственно изолированной оболочки не образует: это область распространения живого вещества в пределах части других оболочек.

Географическая оболочка территориально и по объему почти совпадает с биосферой. Однако единой точки зрения относительно соотношения биосферы и географической оболочки нет. Одни ученые считают, что понятия «биосфера» и «географическая оболочка» очень близки или даже тождественны. В связи с этим вносились предложения заменить термин «географическая оболочка» на термин «биосфера» как более распространенный и знакомый широким массам людей. Другие ученые-географы рассматривают биосферу как определенную стадию развития географической оболочки (в ее истории выделяют три основных этапа: геологический, биогенный и современный антропогенный). По мнению третьих, термины «биосфера» и «географическая оболочка» не тождественны, поскольку в понятии «биосфера» внимание акцентируется на активной роли живого вещества в развитии этой оболочки и этот термин имеет особую биоцентрическую направленность. По-видимому, следует согласиться с последним подходом.

Географическую оболочку рассматривают ныне как систему, причем систему сложную (состоящую из множества материальных тел), динамическую (непрерывно изменяющуюся), саморегулирующуюся (обладающую опреде-

ленной устойчивостью) и открытую (непрерывно обменивающуюся с окружающей средой веществом, энергией и информацией).

Географическая оболочка неоднородна. Она имеет ярусную вертикальную структуру, состоящую из отдельных сфер. Вещество распределено в ней по плотности: чем выше плотность вещества, тем ниже оно расположено. При этом наиболее сложное строение географическая оболочка имеет на контакте сфер: атмосферы и литосферы (поверхность суши), атмосферы и гидросферы (поверхностные слои Мирового океана), гидросферы и литосферы (дно Мирового океана), а также в прибрежной полосе океана, где контактируют гидросфера, литосфера и атмосфера. При удалении от этих зон контакта строение географической оболочки становится более простым.

Вертикальная дифференциация географической оболочки послужила основанием известному географу Ф. Н. Милькову для выделения внутри этой оболочки ландшафтной сферы – тонкого слоя прямого соприкосновения и активного взаимодействия земной коры, атмосферы и водной оболочки. Ландшафтная сфера – биологический фокус географической оболочки. Ее мощность изменяется от нескольких десятков метров до 200 – 300 м. Ландшафтная сфера распадается на пять вариантов: наземный (на суше), земноводный (мелководные моря, озера, реки), водно-поверхностный (в океане), ледовый и донный (дно океана). Самый распространенный из них – водно-поверхностный. Он включает в себя 200-метровый поверхностный слой воды и слой воздуха высотой 50 м. В состав наземного варианта ландшафтной сферы, лучше других изученного, входят приземный слой воздуха высотой 30 – 50 м, растительность с населяющим ее животным миром, почва и современная кора выветривания. Таким образом, ландшафтная сфера – активное ядро географической оболочки.

Географическая оболочка неоднородна не только в вертикальном, но и в горизонтальном направлении. В этом отношении она расчленяется на отдельные природные комплексы. Дифференциация географической оболочки на природные комплексы обусловлена неравномерным распределением тепла на разных ее участках и неоднородностью земной поверхности (наличие материков и океанических впадин, гор, равнин, возвышенностей и т. д.). Самый крупный природный комплекс – сама географическая оболочка. К географическим комплексам относятся также материки и океаны, природные зоны (тундры, леса, степи и др.), а также региональные природные образования, как, например, Восточно-Европейская равнина, пустыня Сахара, Амазонская низменность и др. Небольшие природные комплексы приурочены к отдельным холмам, их склонам, долинам рек и их отдельным участкам (руслу, пойме, надпойменным террасам) и другим мезо- и микроформам рельефа. Чем меньше природный комплекс, тем однороднее природные условия в его пределах. Таким образом, вся географическая оболочка имеет сложное мозаичное строение, она состоит из природных комплексов разного ранга.

Географическая оболочка прошла длительную и сложную историю развития, которую можно разделить на несколько этапов. Предполагают, что первичная холодная Земля образовалась, как и другие планеты, из межзвездных пыли и газов около 5 млрд лет тому назад. В догеологический период развития Земли, закончившийся 4,5 млрд лет назад, происходила ее аккреция, поверхность бомбардировалась метеоритами и испытывала мощнейшие приливные колебания от близко расположенной Луны. Географической оболочки как комплекса сфер тогда не существовало.

Первый – геологический этап развития географической оболочки начался вместе с ранним геологическим этапом развития Земли (4,6 млрд лет назад) и захватил всю ее до-кембрийскую историю, продолжаясь до начала фанерозоя (570 млн лет назад). Это был период образования гидросферы и атмосферы при дегазации мантии. Концентрация тяжелых элементов (железа, никеля) в центре Земли и быстрое ее вращение обусловили возникновение вокруг Земли мощного магнитного поля, защищающего земную поверхность от космического излучения. Возникли мощные толщи континентальной земной коры наряду с первичной океанической, а к концу этапа континентальная кора стала раскалываться на плиты и вместе с возникающей при этом молодой океанической корой начала дрейфовать по вязкой астеносфере.

На этом этапе 3,6–3,8 млрд лет тому назад в водной среде появились первые признаки жизни, которая к концу геологического этапа завоевала океанические пространства Земли. В то время органика еще не играла важной роли в развитии географической оболочки, как это происходит сейчас.

Второй этап развития географической оболочки (от 570 млн до 40 тыс. лет назад) включает палеозой, мезозой и почти весь кайнозой. Этот этап характеризуется образованием озонового экрана, формированием современной атмосферы и гидросферы, резким качественным и количественным скачком в развитии органического мира, началом образования почв. Причем, как и на предыдущем этапе, периоды эволюционного развития чередовались с периодами, имевшими катастрофический характер. Это относится как к неорганической, так и органической природе. Так, периоды спокойной эволюции живых организмов (гомеостаза) сменялись периодами массового вымирания растений и животных (за рассматриваемый этап зафиксированы четыре таких периода).

Третий этап (40 тыс. лет назад – наше время) начинается с появления современного человека разумного (Homo sapiens), точнее, с началом заметного и все возрастающего воздействия человека на окружающую его природную среду 1 .

В заключение следует сказать, что развитие географической оболочки шло по линии усложнения ее структуры, сопровождаясь процессами и явлениями, еще далеко не познанными человеком. Как удачно в связи с этим отметил один из географов, географическая оболочка представляет собой единичный уникальный объект с загадочным прошлым и непредсказуемым будущим.

21.2. Основные закономерности географической оболочки

Географическая оболочка обладает рядом общих закономерностей. К ним относятся: целостность, ритмичность развития, горизонтальная зональность, азональность, полярная асимметрия.

Целостность – единство географической оболочки, обусловленное тесной взаимосвязью слагающих ее компонентов. Причем географическая оболочка не механическая сумма компонентов, а качественно новое образование, обладающее своими особенностями и развивающееся как единое целое. В результате взаимодействия компонентов в природных комплексах осуществляется продуцирование живого вещества и образуется почва. Изменение в пределах природного комплекса одного из компонентов приводит к изменению других и природного комплекса в целом.

В подтверждение сказанного можно привести много примеров. Наиболее ярким из них для географической оболочки является пример с появлением течения Эль-Ниньо в экваториальной части Тихого океана.

Обычно здесь дуют ветры пассаты и морские течения движутся от берегов Америки к Азии. Однако с интервалом в 4 – 7 лет ситуация меняется. Ветры по неизвестным пока причинам изменяют свое направление на обратное, направляясь к берегам Южной Америки. Под их влиянием возникает теплое течение Эль-Ниньо, оттесняющее от побережья материка холодные воды Перуанского течения, богатые планктоном. Появляется это течение у берегов Эквадора в полосе 5 – 7° ю. ш., омывает берега Перу и северной части Чили, проникая до 15° ю. ш., а иногда и южнее. Это происходит обычно в конце года (название течения, возникающего, как правило, под Рождество, означает в переводе с испанского «младенец» и идет от младенца Христа), продолжается 12–15 месяцев и сопровождается катастрофическими последствиями для Южной Америки: обильным выпадением осадков в виде ливней, наводнениями, развитием селей, обвалов, эрозии, размножением вредных насекомых, отходом от берегов рыбы в связи с приходом теплых вод и т. д. К настоящему времени выявлена зависимость погодных условий во многих регионах нашей планеты от течения Эль-Ниньо: необычно сильные ливни в Японии, жестокие засухи в Южной Африке, засухи и лесные пожары в Австралии, бурные наводнения в Англии, обильное выпадение зимних осадков в районах Восточного Средиземноморья. Его возникновение влияет и на экономику многих стран, прежде всего на производство сельскохозяйственных культур (кофе, какао-бобов, чая, сахарного тростника и др.) и на рыболовство. Наиболее интенсивным в прошлом столетии было Эль-Ниньо в 1982–1983 гг. Подсчитано, что течение за это время нанесло мировой экономике материальный ущерб в размере около 14 млрд долларов и привело к гибели 20 тыс. человек.

Другие примеры проявления целостности географической оболочки приведены на схеме 3.

Целостность географической оболочки достигается круговоротом энергии и вещества. Круговороты энергии выражаются балансами. Для географической оболочки наиболее типичны радиационный и тепловой балансы. Что касается круговоротов вещества, то в них вовлечено вещество всех сфер географической оболочки.

Круговороты в географической оболочке различны по своей сложности. Одни из них, например циркуляция атмосферы, система морских течений или движения масс в недрах Земли, представляют собой механические движения, другие (круговорот воды) сопровождаются сменой агрегатного состояния вещества, третьи (биологический круговорот и изменение вещества в литосфере) – химическими превращениями.

В результате круговоротов в географической оболочке происходит взаимодействие между частными оболочками, в процессе которого они обмениваются веществом и энергией. Иногда утверждают, что атмосфера, гидросфера и литосфера проникают друг в друга. На самом деле это не так: проникают друг в друга не геосферы, а их компоненты. Так, твердые частицы литосферы попадают в атмосферу и гидросферу, воздух проникает в литосферу и гидросферу и т. д. Частицы вещества, попавшие из одной сферы в другую, становятся неотъемлемой частью последней. Вода и твердые частицы атмосферы – ее составные части, так же как газы и твердые частицы, находящиеся в водных объектах, принадлежат гидросфере. Наличие веществ, попавших из одной оболочки в другую, формируют в той или иной степени свойства этой оболочки.

Типичным примером круговорота, связывающего все структурные части географической оболочки, можно назвать круговорот воды. Известны общий, глобальный круговорот и частные: океан – атмосфера, материк – атмосфера, внутриокеанический, внутриатмо-сферный, внутриземной и др. Все круговороты воды происходят за счет механического перемещения огромных масс воды, но многие из них – между различными сферами, сопровождаются фазовыми переходами воды или же происходят с участием некоторых специфических сил, например поверхностного натяжения. Глобальный круговорот воды, захватывающий все сферы, сопровождается, помимо этого, и химическими превращениями воды – вхождением ее молекул в минералы, в организмы. Полный (глобальный) круговорот воды со всеми его частными составляющими хорошо представлен на схеме Л. С. Абрамова (рис. 146). Всего там представлено 23 цикла влагооборота.

Целостность – важнейшая географическая закономерность, на знании которой основывается теория и практика рационального природопользования. Учет этой закономерности позволяет предвидеть возможные изменения в природе, давать географический прогноз результатам воздействия человека на природу, осуществлять географическую экспертизу проектов, связанных с хозяйственным освоением тех или иных территорий.

рис. 146. Полный и частные круговороты воды в природе

Географической оболочке свойственна ритмичность развития – повторяемость во времени тех или иных явлений. Существуют две формы ритмики: периодическая и циклическая. Под периодами понимают ритмы одинаковой длительности, под циклами – переменной продолжительности. В природе существуют ритмы разной продолжительности – суточные, внутривековые, многовековые и сверхвековые, имеющие и разное происхождение. Проявляясь одновременно, ритмы накладываются один на другой, в одних случаях усиливая, в других – ослабляя друг друга.

Суточная ритмика, обусловленная вращением Земли вокруг оси, проявляется в изменении температуры, давления, влажности воздуха, облачности, силы ветра, в явлениях приливов и отливов, циркуляции бризов, в функционировании живых организмов и в ряде других явлений. Суточная ритмика на разных широтах имеет свою специфику. Это связано с продолжительностью освещения и высотой Солнца над горизонтом.

Годовая ритмика проявляется в смене времен года, в образовании муссонов, в изменении интенсивности экзогенных процессов, а также процессов почвообразования и разрушения горных пород, сезонности в хозяйственной деятельности человека. В разных природных регионах выделяется различное количество сезонов года. Так, в экваториальном поясе есть лишь один сезон года – жаркий влажный, в саваннах выделяются два сезона: сухой и влажный. В умеренных широтах климатологи предлагают выделять даже шесть сезонов года: помимо известных четырех, еще два – предзимье и предвесенье. Предзимье – это период с момента перехода среднесуточной температуры осенью через 0°С до установления устойчивого снежного покрова. Предвесенье начинается с начала таяния снежного покрова до его полного схода. Как видно, годовая ритмика лучше всего выражена в умеренном поясе и очень слабо – в экваториальном. Сезоны года в разных регионах могут иметь и разные названия. Вряд ли правомерно выделять зимний сезон в низких широтах. Следует иметь в виду, что в разных природных регионах причины годовой ритмики различны. Так, в приполярных широтах она определяется световым режимом, в умеренных – ходом температур, в субэкваториальных – режимом увлажнения.

Из внутривековых ритмов наиболее четко выражены 11-летние, связанные с изменением солнечной активности. Она оказывает большое влияние на магнитное поле и ионосферу Земли и через них – на многие процессы в географической оболочке. Это приводит к периодическому изменению атмосферных процессов, в частности к углублению циклонов и усилению антициклонов, колебаниям речного стока, изменению интенсивности осадконакопления в озерах. Ритмы солнечной активности влияют на рост древесных растений, что отражается на толщине их годичных колец, способствуют периодическим вспышкам эпидемических заболеваний, а также массовому размножению вредителей леса и сельскохозяйственных культур, в том числе саранчи. Как полагал известный гелиобиолог А.Л. Чижевский, 11-летние ритмы влияют не только на развитие многих природных процессов, но и на организм животных и человека, а также на его жизнь и деятельность. Интересно отметить, что ныне некоторые геологи связывают тектоническую активность с солнечной активностью. Сенсационное заявление на эту тему было сделано на Международном геологическом конгрессе, состоявшемся в 1996 г. в Пекине. Сотрудники Института геологии Китая выявили цикличность землетрясений в восточной части своей страны. Ровно через каждые 22 года (удвоенный солнечный цикл) в этом районе происходит возмущение земной коры. Ему предшествует активность пятен на Солнце. Ученые изучили исторические хроники начиная с 1888 г. и нашли полное подтверждение своих выводов относительно 22-летних циклов активности земной коры, приводящих к землетрясениям.

Многовековые ритмы проявляются лишь в отдельных процессах и явлениях. Среди них лучше других проявляется ритм продолжительностью 1800–1900 лет, установленный А.В. Шнитниковым. В нем выделяются три фазы: трансгрессивная (прохладно-влажного климата), развивающаяся быстро, но короткая (300–500 лет); регрессивная (сухого и теплого климата), развивающаяся медленно (600 – 800 лет); переходная (700–800 лет). В трансгрессивную фазу усиливается оледенение на Земле, увеличивается сток рек, повышается уровень озер. В регрессивную фазу ледники, наоборот, отступают, реки мелеют, уровень воды в озерах понижается.

Рассматриваемый ритм связан с изменением приливообразующих сил. Примерно через каждые 1800 лет Солнце, Луна и Земля оказываются в одной плоскости и на одной прямой, а расстояние между Землей и Солнцем при этом становится наименьшим. Приливные силы достигают максимального значения. В Мировом океане усиливается до максимума перемещение воды в вертикальном направлении – на поверхность поступают глубинные холодные воды, что приводит к охлаждению атмосферы и формированию трансгрессивной фазы. Со временем «парад Луны, Земли и Солнца» нарушается и влажность входит в норму.

К сверхвековым относят три цикла, связанные с изменением орбитальных характеристик Земли: прецессия (26 тыс. лет), полное колебание плоскости эклиптики относительно земной оси (42 тыс. лет), полное изменение эксцентриситета орбиты (92 – 94 тыс. лет).

Наиболее длительные циклы в развитии нашей планеты – тектонические циклы продолжительностью около 200 млн лет, известные нам как байкальская, каледонская, герцинская и мезозойско-альпийская эпохи складчатости. Они обусловливаются космическими причинами, главным образом наступлением галактического лета в галактическом году. Под галактическим годом понимается обращение Солнечной системы вокруг центра Галактики, длящееся столько же лет. При приближении системы к центру Галактики, в перигалактии, т. е. «галактическим летом», гравитация увеличивается на 27% по сравнению с апогалактием, что и приводит к росту тектонической активности на Земле.

Существуют также инверсии магнитного поля Земли с продолжительностью 145– 160 млн лет.

Ритмические явления не повторяют в конце ритма полностью того состояния природы, которое было в его начале. Именно этим и объясняется направленное развитие природных процессов, которое при наложении ритмичности на поступательность оказывается в конечном итоге идущим по спирали.

Изучение ритмических явлений имеет большое значение для разработки географических прогнозов.

Планетарной географической закономерностью, установленной великим русским ученым В. В. Докучаевым, является зональность – закономерное изменение природных компонентов и природных комплексов по направлению от экватора к полюсам. Зональность обусловлена неодинаковым количеством тепла, поступающего на разные широты в связи с шарообразной фигурой Земли. Немалое значение имеет также расстояние Земли от Солнца. Важны и размеры Земли: ее масса позволяет удерживать вокруг себя воздушную оболочку, без которой не было бы и зональности. Наконец, зональность усложняется определенным наклоном земной оси к плоскости эклиптики.

На Земле зональны климат, воды суши и океана, процессы выветривания, некоторые формы рельефа, образующиеся под воздействием внешних сил (поверхностные воды, ветры, ледники), растительность, почвы, животный мир. Зональность компонентов и структурных частей предопределяет зональность всей географической оболочки, т. е. географической или ландшафтной зональности. Географы различают зональность компонентную (климата, растительности, почв и др.) и комплексную (географическую или ландшафтную). Представление о компонентной зональности сложилось с античных времен. Комплексную зональность открыл В.В. Докучаев.

Наиболее крупные зональные подразделения географической оболочки – географические пояса. Они отличаются друг от друга температурными условиями, общими особенностями циркуляции атмосферы. На суше выделяются следующие географические пояса: экваториальный и в каждом полушарии – субэкваториальный, тропический, субтропический, умеренный, а также в северном полушарии – субарктический и арктический, а в южном – субантарктический и антарктический. Всего, таким образом, на суше выделяется 13 природных поясов. В каждом из них свои особенности для жизни и хозяйственной деятельности человека. Наиболее благоприятны эти условия в трех поясах: субтропическом, умеренном и субэкваториальном (кстати, все три – с хорошо выраженной сезонной ритмикой развития природы). Они интенсивнее других освоены человеком.

Аналогичные по названию пояса (за исключением субэкваториальных) выявлены и в Мировом океане. Зональность Мирового океана выражается в субширотном изменении температуры, солености, плотности, газового состава воды, в динамике верхней толщи вод, а также в органическом мире. Д.В. Богданов выделяет природные океанические пояса – «обширные водные пространства, охватывающие поверхность океана и прилегающие верхние слои до глубины нескольких сот метров, в которых отчетливо прослеживаются особенности природы океанов (температура и соленость воды, течения, ледовые условия, биологические и некоторые гидрохимические показатели), прямо или косвенно обусловленные влиянием широты места» (рис. 147). Границы поясов проведены им по океанологическим фронтам – рубежам распространения и взаимодействия вод с разными свойствами. Океанические пояса очень хорошо сочетаются с физико-географическими поясами на суше; исключение составляет субэкваториальный пояс суши, не имеющий своего океанического аналога.

Внутри поясов на суше по соотношению тепла и влаги выделяются природные зоны, названия которых определяются по преобладающему в них типу растительности. Так, например, в субарктическом поясе есть зоны тундры и лесотундры, в умеренном – зоны лесов, лесостепей, степей, полупустынь и пустынь, в тропическом – зоны вечнозеленых лесов, полупустынь и пустынь.

Рис. 147. Географическая поясность Мирового океана (в сопряжении с географическими поясами суши) (по Д. В. Богданову)

Географические зоны подразделяются на подзоны по степени выраженности зональных признаков. Теоретически в каждой зоне можно выделить три подзоны: центральную, с наиболее типичными для зоны чертами, и

окраинные, несущие некоторые признаки, свойственные смежным зонам. В качестве примера можно привести лесную зону умеренного пояса, в которой выделяются подзоны северной, средней и южной тайги, а также подтаежных (хвойно-широколиственных) и широколиственных лесов.

В связи с неоднородностью земной поверхности, а следовательно, и условий увлажнения в различных частях материков зоны и подзоны не всегда имеют широтное простирание. Иногда они протягиваются почти в меридиональном направлении, как, например, в южной половине Северной Америки или на востоке Азии. Поэтому зональность правильнее называть не широтной, а горизонтальной. Кроме того, многие зоны не распространены по всему земному шару, как пояса; некоторые из них встречаются только на западе материков, на востоке или в их центре. Это объясняется тем, что зоны образовались вследствие гидротермической, а не радиационной дифференциации географической оболочки, т. е. из-за различного соотношения тепла и влаги. При этом зональным является только распределение тепла; распределение же влаги зависит от удаления территории от источников влаги, т. е. от океанов.

В 1956 г. А.А. Григорьев и М.И. Будыко сформулировали так называемый периодический закон географической зональности, где каждая природная зона характеризуется своими количественными соотношениями тепла и влаги. Тепло оценивается в этом законе радиационным балансом, а степень увлажнения – радиационным индексом сухости К Б (или РИС) = B / (Z х r), где В – годовой радиационный баланс, r – годовая сумма осадков, L – скрытая теплота парообразования.

Радиационный индекс сухости показывает, какая доля радиационного баланса тратится на испарение осадков: если на испарение выпавших осадков требуется больше тепла, чем его приходит от Солнца, и часть осадков остается на Земле, то увлажнение такой территории достаточное или избыточное. Если же тепла приходит больше, чем затрачивается на испарение, то излишки тепла нагревают земную поверхность, испытывающую при этом недостаток увлажнения: К Б < 0,45 – климат избыточно влажный, К Б = 0,45-Н,0 – влажный, К Б = 1,0-^3,0 – недостаточно влажный, К Б > 3,0 – сухой.

Оказалось, что, хотя в основе зональности лежит нарастание радиационного баланса от высоких широт к низким, ландшафтный облик природной зоны более всего определяется условиями увлажнения. Этот показатель определяет тип зоны (лесная, степная, пустынная и т. д.), а радиационный баланс – ее конкретный облик (умеренных широт, субтропическая, тропическая и др.). Поэтому в каждом географическом поясе, в зависимости от степени увлажнения, сформировались свои гумидные и аридные природные зоны, которые могут замещаться на одной и той же широте в зависимости от степени увлажнения. Характерно, что во всех поясах оптимальные условия для развития растительности создаются при радиационном индексе сухости, близком к единице.

Рис. 148. Периодический закон географической зональности. К Б – радиационный индекс сухости. (Диаметры кружков пропорциональны биологической продуктивности ландшафтов)

Периодический закон географической зональности записывается в виде таблицы-матрицы, в которой по горизонтали отсчитывается радиационный индекс сухости, а по вертикали – значения годового радиационного баланса (рис. 148).

Говоря о зональности как всеобщей закономерности, следует иметь в виду, что она не везде выражена одинаково. Наиболее четко она проявляется в полярных, приэкваториальных и экваториальных широтах, а также во внутриматериковых: равнинных условиях умеренных и субтропических широт. К последним относятся прежде всего вытянутые в меридиональном направлении крупнейшие по размерам Восточно-Европейская и Западно-Сибирская равнины. По-видимому, это помогло В. В. Докучаеву выявить рассматриваемую закономерность, поскольку он изучал ее на Восточно-Европейской равнине. Сыграло свою роль в определении комплексной зональности и то обстоятельство, что В. В. Докучаев был почвоведом, а почва, как известно, является интегральным показателем природных условий территории.

Некоторые ученые (О. К. Леонтьев, А. П. Лисицын) проводят природные зоны в толще и на дне океанов. Однако выделенные ими здесь природные комплексы нельзя называть физико-географическими зонами в общепринятом понимании, т. е. на их обособление не влияет зональное распределение радиации – основная причина зональности на поверхности Земли. Здесь можно говорить о зональных свойствах водных масс и донных отложений флоры и фауны, приобретенных опосредованно, через водообмен с приповерхностной водной массой, переотложение зонально обусловленных терригенных и биогенных осадков и трофическую зависимость донной фауны от поступающих сверху отмерших органических остатков.

Зональность географической оболочки как планетарное явление нарушается противоположным свойством – азональностью.

Под азональностью географической оболочки понимается распространение какого-то объекта или явления вне связи с зональными особенностями данной территории. Причина азональности – неоднородность земной поверхности: наличие материков и океанов, гор и равнин на материках, своеобразие условий увлажнения и других свойств географической оболочки. Существуют две основные формы проявления азональности – секторность географических поясов и высотная поясность.

Секторность, или долготная дифференциация, географических поясов определяется увлажнением (в отличие от широтных зон, где важную роль играют не только увлажнение, но и теплообеспеченность). Секторность проявляется прежде всего в формировании в пределах поясов трех секторов – материкового и двух приокеанических. Однако они выражены не везде одинаково, что зависит от географического положения материка, его размеров и конфигурации, а также от характера циркуляции атмосферы

Географическая секторность полнее всего выражена на самом крупном материке Земли – в Евразии, от арктического до экваториального пояса включительно. Наиболее ярко долготная дифференциация представлена здесь в умеренном и субтропическом поясах, где отчетливо выражены все три сектора. В тропическом поясе выделяются два сектора. Слабо выражена долготная дифференциация в экваториальном и приполярных поясах.

Другой причиной азональности географической оболочки, нарушающей зональность и секторность, является расположение горных систем, которые могут препятствовать проникновению в глубь континентов воздушных масс, несущих влагу и тепло. Это особенно касается тех хребтов умеренного пояса, которые расположены субмеридионально на пути следующих с запада циклонов.

Азональность ландшафтов часто обусловливается особенностями слагающих их горных пород. Так, близкое к поверхности залегание растворимых горных пород приводит к формированию своеобразных карстовых ландшафтов, весьма существенно отличающихся от окружающих зональных природных комплексов. В районах распространения водно-ледниковых песков образуются ландшафты полесского типа. На рисунке 149 показано расположение географических зон и секторов внутри их на гипотетическом равнинном материке, построенном исходя из реального распространения суши на земном шаре на разных широтах. Этот же рисунок четко иллюстрирует асимметрию географической оболочки.

В заключение отметим, что азональность, так же как и зональность, всеобщая закономерность. Каждый участок земной поверхности в связи с ее неоднородностью по-своему реагирует на приходящую солнечную энергию и, следовательно, приобретает специфические особенности, которые формируются на общем зональном фоне. По существу, азональность – конкретная форма проявления зональности. Поэтому любой участок земной поверхности одновременно является зональным и азональным.

Высотная поясность – закономерная смена природных компонентов и природных комплексов с подъемом в горы от их подножия до вершин. Она обусловлена изменением климата с высотой: понижением температуры и увеличением осадков до определенной высоты (до 2 – 3 км) на наветренных склонах.

Высотная поясность имеет много общего с горизонтальной зональностью: смена поясов при подъеме в горы происходит в той же последовательности., что и на равнинах, при движении от экватора к полюсам. Однако природные пояса в горах меняются значительно быстрее, чем природные зоны на равнинах. В северном полушарии в направлении от экватора к полюсам температура убывает примерно на 0,5 °С на каждый градус широты (111 км), в то время как в горах она падает в среднем на 0,6 °С на каждые 100 м.

Рис. 149. Схема географических поясов и основных зональных типов ландшафтов на гипотетическом материке (размеры изображенного материка соответствуют половине площади суши земного шара в масштабе1: 90 000 000), конфигурация – ее расположению по широтам, поверхность – невысокой равнине (по А. М. Рябчикову и др.)

Есть и другие различия: в горах во всех поясах при достаточном количестве тепла и влаги существует особый пояс субальпийских и альпийских лугов, которого нет на равнинах. Более того, каждый пояс гор, аналогичный по названию с равнинным, существенно от него отличается, ибо они получают различную по составу солнечную радиацию и имеют разные условия освещенности.

Высотная поясность в горах складывается не только под влиянием изменения высоты, но и особенностей рельефа гор. Большую роль при этом играет экспозиция склонов, как инсоляционная, так и циркуляционная. В определенных условиях в горах наблюдается инверсия высотной поясности: при застаивании холодного воздуха в межгорных котловинах пояс хвойных лесов, например, может занимать более низкое положение по сравнению с поясом широколиственных лесов. В целом высотная поясность отличается значительно большим разнообразием по сравнению с горизонтальной зональностью и проявляется к тому же на близких расстояниях.

Однако между горизонтальной зональностью и высотной поясностью существует и тесная взаимосвязь. Высотная поясность начинается в горах с аналога той горизонтальной зоны, в пределах которой расположены горы. Так, в горах, находящихся в степной зоне, нижний пояс – горно-степной, в лесной – горно-лесной и т. д. Горизонтальная зональность определяет тип высотной поясности. В каждой горизонтальной зоне горы обладают своим спектром (набором) высотных поясов. Количество высотных поясов зависит от высоты гор и их местоположения. Чем выше горы и чем ближе к экватору они расположены, тем богаче у них спектр поясов.

На характер высотной поясности влияет также секторность географической оболочки: состав вертикальных поясов различается в зависимости от того, в каком именно секторе расположен тот или иной горный массив. Обобщенная структура высотной поясности ландшафтов в разных географических зонах (на разных широтах) и в различных секторах показана на рисунке 150. Аналогично высотной поясности в горах на суше можно говорить о глубинной поясности в океане.

Одной из главных (а по мнению академика К.К. Маркова, основной) закономерностей географической оболочки следует считать полярную асимметрию. Причиной этой закономерности является прежде всего асимметрия фигуры Земли. Как известно, северная полуось Земли на 30 м длиннее южной, так что Земля сильнее сплюснута у Южного полюса. Асимметрично расположение на Земле материковых и океанических масс. В северном полушарии суша занимает 39% площади, а в южном – лишь 19%. Вокруг Северного полюса расположен океан, вокруг Южного – материк Антарктида. На южных материках платформы занимают от 70 до 95% их площади, на северных – 30 – 50%. В северном полушарии есть пояс молодых складчатых сооружений (Альпийско-Гималайский), протянувшийся в широтном направлении. Аналога ему в южном полушарии нет. В северном полушарии между 50 и 70° расположены наиболее приподнятые в геоструктурном отношении участки суши (щиты Канадский, Балтийский, Анабарский. Алданский). В южном полушарии на этих широтах – цепочка океанических впадин. В северном полушарии есть материковое кольцо, обрамляющее полярный океан, в южном полушарии – океаническое кольцо, которое окаймляет полярный материк.

Асимметрия суши и моря влечет за собой асимметрию других компонентов географической оболочки. Так, в океаносфере системы морских течений в северном и южном полушариях не повторяют друг друга; более того, теплые течения в северном полушарии распространяются вплоть до арктических широт, тогда как в южном – только до широты 35°. Температура воды в северном полушарии на 3° выше, чем в южном.

Климат северного полушария более континентальный, чем южного (годовая амплитуда температуры воздуха соответственно 14 и 6 °С). В северном полушарии слабое континентальное оледенение, сильное морское и велика площадь вечной мерзлоты. В южном полушарии эти показатели прямо противоположны. В северном полушарии огромную площадь занимает таежная зона, в южном аналога ей нет. Более того, на тех широтах, на которых в северном полушарии господствуют широколиственные и смешанные леса (~50°), в южном на островах расположены арктические пустыни. Различен и животный мир полушарий. В южном полушарии отсутствуют зоны тундры, лесотундры, лесостепи, а также пустынь умеренного пояса. Различен и животный мир полушарий. В южном нет двугорбых верблюдов, моржей, белых медведей и многих других животных, но есть, например, пингвины, сумчатые млекопитающие и некоторые другие животные, которых нет в северном полушарии. В целом различия в видовом составе растений и животных между полушариями весьма значительны.

Таковы основные закономерности географической оболочки, некоторые из них иногда называют законами. Однако, как убедительно доказал Д. Л. Арманд, физическая география имеет дело не с законами, а с закономерностями – устойчиво повторяющимися отношениями между явлениями в природе, но имеющими более низкий ранг, чем законы.

рис. 150. Обобщенная структура высотной поясности ландшафтов в разных географических зонах (по Рябчикову А.А.)

Характеризуя географическую оболочку, необходимо еще раз подчеркнуть, что она тесно связана с окружающим ее космическим пространством и с внутренними частями Земли. Прежде всего из Космоса она получает необходимую ей энергию. Силы притяжения удерживают Землю на околосолнечной орбите и вызывают периодические приливные возмущения в теле планеты. К Земле от Солнца направлены корпускулярные потоки («солнечный ветер»), рентгеновские и ультрафиолетовые лучи, радиоволны и видимая лучистая энергия. Из глубин Вселенной к Земле направлены космические лучи. Потоки перечисленных лучей и частиц вызывают образование у Земли магнитных бурь, полярных сияний, ионизацию воздуха и другие явления. Масса Земли постоянно увеличивается за счет падения метеоритов и космической пыли. Но Земля воспринимает воздействие Космоса непассивно. Вокруг Земли как планеты, имеющей магнитное поле и радиационные пояса, создается специфическая природная система, получившая название географического пространства. Оно простирается от магнитопаузы – верхней границы магнитного поля Земли, которая находится на высоте не менее 10 земных радиусов, до нижней границы земной коры – так называемой поверхности Мохоровичича (Мохо). Географическое пространство подразделяется на четыре части (сверху вниз):

    Ближний Космос. Его нижняя граница проходит по верхней границе атмосферы на высоте 1500 – 2000 км над Землей. Здесь происходит основное взаимодействие космических факторов с магнитным и гравитационным полями Земли. Здесь задерживается корпускулярное излучение Космоса, губительное для живых организмов.

    Высокая атмосфера. Снизу она ограничена стратопаузой, которая в данном случае принимается и за верхнюю границу географической оболочки. Здесь происходит торможение первичных космических лучей, их преобразование, нагревание термосферы.

    Географическая оболочка. Ее нижняя граница – подошва коры выветривания в литосфере.

    Подстилающая кора. Нижняя граница – поверхность Мохо. Это область проявления эндогенных факторов, формирующих первичный рельеф планеты.

Концепция географического пространства уточняет положение географической оболочки нашей планеты.

В заключение отметим, что большое влияние на географическую оболочку в настоящее время оказывает человек в процессе своей хозяйственной деятельности.

Географическая оболочка - это целостная, непрерывная оболочка Земли, среда деятельности человека, в пределах которой соприкасаются, взаимно проникают друг в друга и взаимодействуют между собой нижние слои атмосферы, верхние слои литосферы, вся гидросфера и биосфера (рис. 1). Все сферы географической оболочки непрерывно обмениваются между собой веществом и энергией, образуя целостную и равновесную природную систему.

Географическая оболочка не имеет четких границ, поэтому ученые проводят их по-разному. Верхнюю границу совмещают с границей тропосферы (8-18 км) или с озоновым экраном (25-30 км). За нижнюю границу принимают границу земной коры (от 5 км под океанами до 70 км под горными сооружениями материков) или нижнюю границу ее осадочного слоя (до 5 км). Вещество в географической оболочке находится в трех состояниях: твердом, жидком, газообразном. Это имеет огромное значение для развития жизни и происходящих природных процессов на Земле.

Основными источниками развития всех процессов, происходящих в географической оболочке, служат солнечная энергия и внутренняя энергия Земли. Испытывает географическая оболочка и влияние космоса. Только в ней создаются условия для развития органической жизни.

Основные закономерности географической оболочки

Географической оболочке присущи следующие общие закономерности ее развития: целостность, ритмичность, круговорот веществ и энергии, зональность, азональность. Знание общих закономерностей развития географической оболочки позволяет человеку более бережно использовать природные богатства, не нанося ущерба окружающей среде.

Целостность - это единство географической оболочки, взаимосвязь и взаимозависимость ее природных компонентов (горных пород, воды, воздуха, почв, растений, животных). Взаимодействие и взаимопроникновение всех природных компонентов географической оболочки связывает их в единое целое. Благодаря этим процессам сохраняется природное равновесие. Изменение одного компонента природы неизбежно влечет за собой изменение других компонентов и географической оболочки в целом. Знание закона целостности географической оболочки имеет большое практическое значение. Если в хозяйственной деятельности человека не будет учитываться эта закономерность географической оболочки, то в ней будут происходить разрушительные процессы.

Требуется предварительное тщательное изучение территории, которая подвергается воздействию человека. Например, после осушения болота понижается уровень грунтовых вод. В результате меняется почва, микроклимат, растительность, животный мир, т. е. нарушается природное равновесие территории.

Понимание целостности географической оболочки позволяет предвидеть возможные изменения в природе, давать географический прогноз результатам воздействия человека на природу.

Ритмичность - это повторяемость тех или иных природных явлений через определенные интервалы времени, или ритмы. В природе все процессы и явления подчинены ритмам. Существуют ритмы разной продолжительности: суточные (смена дня и ночи), годовые (смена времен года), внутривековые (связанные с изменением солнечной активности - 11, 22 года и др.), многовековые (столетние) и охватывающие тысячелетия и многие миллионы лет. Их продолжительность может достигать 150-240 млн лет. С ними связаны, например, периоды активного образования гор и относительного спокойствия земной коры, похолодания и потепления климата.

Наиболее известен 11-летний ритм солнечной активности, которая определяется числом пятен, видимых на поверхности Солнца. Увеличение солнечной активности сопровождается увеличением числа пятен на Солнце и потока солнечной энергии к Земле («солнечный ветер»). Это вызывает на Земле магнитные бури, влияет на погоду и климат, здоровье человека.

Круговорот веществ и энергии - важнейший механизм развития природных процессов географической оболочки, благодаря которому осуществляется обмен веществ и энергии между ее составными частями. Выделяют различные круговороты (циклы) веществ и энергии: круговорот воды (гидрологический цикл), воздушные круговороты в атмосфере (циркуляция атмосферы), круговороты в литосфере (геологический цикл) и др.

Происходит круговорот веществ и в литосфере. Магма изливается на поверхность и образует изверженные горные породы. Под действием энергии Солнца, воды и температур они разрушаются и превращаются в осадочные породы. Погружаясь на большие глубины, осадочные породы испытывают действие высоких температур и давления, превращаются в метаморфические породы. При очень высоких температурах происходит расплавление пород, и они опять возвращаются в исходное состояние (магму).

Круговороты не замкнуты, они постоянно находятся под влиянием внешних и внутренних сил, происходят качественные изменения веществ и энергии, развитие всех компонентов природы и географической оболочки в целом. Это способствует сохранению равновесия в природе, ее восстановлению. Например, при незначительном загрязнении вода способна самоочищаться.

Главной закономерностью географической оболочки является проявление географической зональности. Географическая зональность - основной закон распределения природных комплексов на поверхности Земли, который проявляется в виде широтной зональности (последовательная смена географических поясов и природных зон). Широтная зональность - закономерное изменение природных условий на поверхности Земли от экватора к полюсам, связанное с изменением угла падения солнечных лучей. Единая и целостная географическая оболочка неоднородна на разных широтах. Вследствие неравномерного распределения солнечного тепла с широтой на земном шаре закономерно изменяется от экватора к полюсам не только климат, но и почвообразовательные процессы, растительность, животный мир, гидрологический режим рек и озер.

Наиболее крупные зональные подразделения географической оболочки - географические пояса . Они, как правило, простираются в широтном направлении, сменяют друг друга на суше и в океане от экватора к полюсам и повторяются в обоих полушариях: экваториальный, субэкваториальные, тропические, субтропические, умеренные, субарктический и субантарктический, арктический и антарктический. Географические пояса отличаются друг от друга воздушными массами, климатом, почвами, растительностью, животным миром.

В каждом географическом поясе формируется свой набор природных зон. Природная зона - зональный природный комплекс в пределах географического пояса, который характеризуется общностью температурных условий, увлажнения, сходными почвами, животным и растительным миром.

В соответствии с изменением климатических условий с юга на север, по широте, изменяются и природные зоны. Смена природных зон с географической широтой является проявлением географического закона широтной зональности. Климатические условия, особенно увлажнение и амплитуды температур, изменяются также по мере удаления от океана в глубь материков. Поэтому главная причина формирования нескольких природных зон внутри географического пояса - это соотношение тепла и влаги. (Проанализируйте по карте атласа соответствие природных зон географическим поясам.)

Каждая природная зона характеризуется определенным климатом, типом почв, растительности и животного мира. Природные зоны закономерно сменяются от экватора к полюсам и от побережья океанов в глубь материков вслед за изменением климатических условий. Характер рельефа влияет на режим увлажнения в пределах природной зоны и может нарушать ее широтное простирание.

Наряду с зональностью важнейшей закономерностью географической оболочки является азональность. Азональность - это формирование природных комплексов, связанных с проявлением внутренних процессов Земли, которые определяют неоднородность земной поверхности (наличие материков и океанов, гор и равнин на материках и др.). Наиболее ярко азональность проявляется в горах в виде высотной поясности. Высотная поясность - закономерная смена природных комплексов (поясов) от подножия гор к их вершинам (см. рис. 2). Высотная поясность имеет много общего с широтной зональностью: смена поясов при подъеме в горы происходит примерно в той же последовательности, что и на равнинах при движении от экватора к полюсам. Первый высотный пояс всегда соответствует той природной зоне, в которой расположены горы.

Основные закономерности географической оболочки - целостность, ритмичность, круговорот веществ и энергии, зональность, азональность. Знания о закономерностях развития географической оболочки необходимы для понимания процессов и явлений, происходящих в природе, предвидения последствий хозяйственной деятельности человека.

Географи́ческая оболо́чка - в российской географической науке под этим понимается целостная и непрерывная оболочка Земли, где её составные части: верхняя часть литосферы (земная кора), нижняя часть атмосферы (тропосфера, стратосфера, гидросфера и биосфера) — а также антропосфера проникают друг в друга и находятся в тесном взаимодействии. Между ними происходит непрерывный обмен веществом и энергией.

Верхнюю границу географической оболочки проводят по стратопаузе, так как до этого рубежа сказывается тепловое воздействие земной поверхности на атмосферные процессы; границу географической оболочки в литосфере часто совмещают с нижним пределом области гипергенеза (иногда за нижнюю границу географической оболочки принимают подножие стратисферы, среднюю глубину сейсмических или вулканических очагов, подошву земной коры, уровень нулевых годовых амплитуд температуры). Географическая оболочка полностью охватывает гидросферу, опускаясь в океане на 10-11 км ниже уровня моря, верхнюю зону земной коры и нижнюю часть атмосферы (слой мощностью 25 – 30 км). Наибольшая толщина географической оболочки близка к 40 км. Географическая оболочка является объектом исследования географии и её отраслевых наук.

Несмотря на критику термина «географическая оболочка» и сложности для его определения активно используется в географии и является одним из основных понятий в российской географии.

Представление о географической оболочке как о «наружной сфере земли» введено русским метеорологом и географом П. И. Броуновым (1910). Современное понятие разработано и введено в систему географических наук А. А. Григорьевым (1932). Наиболее удачно история понятия и спорные вопросы рассмотрены в трудах И. М. Забелина.

Понятия, аналогичные понятию географической оболочки, есть и в зарубежной географической литературе (земная оболочка А. Гетнера и Р. Хартшорна, геосфера Г. Кароля и др.). Однако там географическая оболочка рассматривается обычно не как природная система, а как совокупность природных и общественных явлений.

Существуют другие земные оболочки на границах соединения различных геосфер.

2 СТРУКТУРА ГЕОГРАФИЧЕСКОЙ ОБОЛОЧКИ

Рассмотрим основные структурные элементы географической оболочки.

Земная кора - это верхняя часть твёрдой земли. От мантии отделена границей с резким повышением скоростей сейсмических волн - границей Мохоровичича. Толщина коры колеблется от 6 км под океаном, до 30-50 км на континентах. Бывает два типа коры - континентальная и океаническая. В строении континентальной коры выделяют три геологических слоя: осадочный чехол, гранитный и базальтовый. Океаническая кора сложена преимущественно породами основного состава, плюс осадочный чехол. Земная кора разделена на различные по величине литосферные плиты, двигающиеся относительно друг друга. Кинематику этих движений описывает тектоника плит.

Рисунок 1 – Структура заемной коры

Кора есть на Марсе и Венере, Луне и многих спутниках планет-гигантов. На Меркурии, хотя он и принадлежит к планетам земной группы, кора земного типа отсутствует. В большинстве случаев она состоит из базальтов. Земля уникальна тем, что обладает корой двух типов: континентальной и океанической.

Масса земной коры оценивается в 2,8·1019 тонн (из них 21 % - океаническая кора и 79 % - континентальная). Кора составляет лишь 0,473 % общей массы Земли

Океаническая кора состоит главным образом из базальтов. Согласно теории тектоники плит, она непрерывно образуется в срединно-океанических хребтах, расходится от них и поглощается в мантию в зонах субдукции. Поэтому океаническая кора относительно молодая, и самые древние её участки датируются поздней юрой.

Толщина океанической коры практически не меняется со временем, поскольку в основном она определяется количеством расплава, выделившегося из материала мантии в зонах срединно-океанических хребтов. До некоторой степени влияние оказывает толщина осадочного слоя на дне океанов. В разных географических областях толщина океанической коры колеблется в пределах 5-7 километров.

В рамках стратификации Земли по механическим свойствам, океаническая кора относится к океанической литосфере. Толщина океанической литосферы, в отличие от коры, зависит в основном от её возраста. В зонах срединно-океанических хребтов астеносфера подходит очень близко к поверхности, и литосферный слой практически полностью отсутствует. По мере удаления от зон срединно-океанических хребтов толщина литосферы сначала растет пропорционально её возрасту, затем скорость роста снижается. В зонах субдукции толщина океанической литосферы достигает наибольших значений, составляя 120-130 километров.

Континентальная кора имеет трёхслойное строение. Верхний слой представлен прерывистым покровом осадочных пород, который развит широко, но редко имеет большую мощность. Большая часть коры сложена под верхней корой - слоем, состоящим главным образом из гранитов и гнейсов, обладающим низкой плотностью и древней историей. Исследования показывают, что большая часть этих пород образовались очень давно, около 3 миллиардов лет назад. Ниже находится нижняя кора, состоящая из метаморфических пород -гранулитов и им подобных.

Земную кору составляет сравнительно небольшое число элементов. Около половины массы земной коры приходится на кислород, более 25% - на кремний. Всего 18 элементов: O, Si, Al, Fe, Ca, Na, K, Mg, H, Ti, C, Cl, P, S, N, Mn, F, Ba - составляют 99,8 % массы земной коры.

Определение состава верхней континентальной коры стало одной из первых задач, которую взялась решать молодая наука геохимия. Собственно из попыток решения этой задачи и появилась геохимия. Эта задача весьма сложна, поскольку земная кора состоит из множества пород разнообразного состава. Даже в пределах одного геологического тела состав пород может сильно варьировать. В разных районах могут быть распространены совершенно разные типы пород. В свете всего этого и возникла задача определения общего, среднего состава той части земной коры, что выходит на поверхность на континентах. С другой стороны, сразу же возник вопрос о содержательности этого термина.

Первая оценка состава верхней земной коры была сделана Кларком. Кларк был сотрудником геологической службы США и занимался химическим анализом горных пород. После многих лет аналитических работ, он обобщил результаты анализов и рассчитал средний состав пород. Он предположил, что многие тысячи образцов, по сути, случайно отобранных, отражают средний состав земной коры. Эта работа Кларка вызвала фурор в научном сообществе. Она подверглась жёсткой критике, так как многие исследователи сравнивали такой способ с получением «средней температуры по больнице, включая морг». Другие исследователи считали, что этот метод подходит для такого разнородного объекта, каким является земная кора. Полученный Кларком состав земной коры был близок к граниту.

Следующую попытку определить средний состав земной коры предпринял Виктор Гольдшмидт. Он сделал предположение, что ледник, двигающийся по континентальной коре, соскребает все выходящие на поверхность породы, смешивает их. В результате породы, отлагающиеся в результате ледниковой эрозии, отражают состав средней континентальной коры. Гольдшмидт проанализировал состав ленточных глин, отлагавшихся в Балтийском море во время последнего оледенения. Их состав оказался удивительно близок к среднему составу, полученному Кларком. Совпадение оценок, полученных столь разными методами, стало сильным подтверждением геохимических методов.

Впоследствии определением состава континентальной коры занимались многие исследователи. Широкое научное признание получили оценки Виноградова, Ведеполя, Ронова и Ярошевского.

Некоторые новые попытки определения состава континентальной коры строятся на разделении её на части, сформированные в различных геодинамических обстановках.

Верхняя граница тропосферы находится на высоте 8-10 км в полярных, 10-12 км в умеренных и 16-18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы. Содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м.

За «нормальные условия» у поверхности Земли приняты: плотность 1,2 кг/м3, барометрическое давление 101,34 кПа, температура плюс 20 °C и относительная влажность 50 %. Эти условные показатели имеют чисто инженерное значение.

Стратосфе́ра (от лат. stratum – настил, слой) - слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8 С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Именно в стратосфере располагается слой озоносферы («озоновый слой») (на высоте от 15-20 до 55-60 км), который определяет верхний предел жизни в биосфере. Озон (О3) образуется в результате фотохимических реакций наиболее интенсивно на высоте ~30 км. Общая масса О3 составила бы при нормальном давлении слой толщиной 1,7-4,0 мм, но и этого достаточно для поглощения губительного для жизни ультрафиолетового излучения Солнца. Разрушение О3 происходит при его взаимодействии со свободными радикалами, NO,галогенсодержащими соединениями (в т. ч. «фреонами»).

В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180-200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний, зарниц и других свечений.

В стратосфере и более высоких слоях под воздействием солнечной радиации молекулы газов диссоциируют - на атомы (выше 80 км диссоциируют СО2 и Н2, выше 150 км - О2, выше 300 км - Н2). На высоте 200-500 км в ионосфере происходит также ионизация газов, на высоте 320 км концентрация заряженных частиц (О+2, О−2, N+2) составляет ~ 1/300 от концентрации нейтральных частиц. В верхних слоях атмосферы присутствуют свободные радикалы - ОН , НО 2 и др.

В стратосфере почти нет водяного пара.

Тропосфе́ра (др.-греч. τροπή - «поворот», «изменение» иσφαῖρα - «шар»)- нижний, наиболее изученный слой атмосферы, высотой в полярных областях 8-10 км, в умеренных широтах до 10-12 км, на экваторе- 16-18 км.

При подъёме в тропосфере температура понижается в среднем на 0,65 К через каждые 100 м и достигает 180÷220 К (-90 ÷ -53° C) в верхней части. Этот верхний слой тропосферы, в котором снижение температуры с высотой прекращается, называют тропопаузой. Следующий, расположенный выше тропосферы, слой атмосферы называется стратосфера.

В тропосфере сосредоточено более 80% всей массы атмосферного воздуха, сильно развиты турбулентность и конвекция, сосредоточена преобладающая часть водяного пара, возникают облака, формируются иатмосферные фронты, развиваются циклоны и антициклоны, а также другие процессы, определяющие погоду и климат. Происходящие в тропосфере процессы обусловлены, прежде всего, конвекцией.

Часть тропосферы, в пределах которой на земной поверхности возможно зарождение ледников, называется ионосфера.

Гидросфе́ра (от др.-греч. Yδωρ - вода и σφαῖρα - шар) - это водная оболочка Земли.

Она образует прерывистую водную оболочку. Средняя глубина океана составляет 3850 м, максимальная (Марианская впадина Тихого океана) - 11 022 метра. Около 97 % массы гидросферы составляют соленые океанические воды, 2,2 % - воды ледников, остальная часть приходится на подземные, озерные и речные пресные воды. Общий объём воды на планете около 1 532 000 000 кубических километров. Масса гидросферы примерно 1,46*10 21 кг. Это в 275 раз больше массы атмосферы, но лишь 1/4000 от массы всей планеты. Гидросферу на 94% составляют воды Мирового океана, в которых растворены соли (в среднем 3,5%), а также ряд газов. Верхний слой океана содержит 140 трлн тонн углекислого газа, а растворенного кислорода - 8 трлн тонн. Область биосферы в гидросфере представлена во всей ее толще, однако наибольшая плотность живого вещества приходится на поверхностные прогреваемые и освещаемые лучами солнца слои, а также прибрежные зоны.

В общем виде принято деление гидросферы на Мировой океан, континентальные воды и подземные воды. Большая часть воды сосредоточена в океане, значительно меньше - в континентальной речной сети и подземных водах. Также большие запасы воды имеются в атмосфере, в виде облаков и водяного пара. Свыше 96 % объёма гидросферы составляют моря и океаны, около 2 % - подземные воды, около 2 % - льды и снега, около 0,02 % - поверхностные воды суши. Часть воды находится в твёрдом состоянии в виде ледников, снежного покрова и в вечной мерзлоте, представляя собой криосферу.

Поверхностные воды, занимая сравнительно малую долю в общей массе гидросферы, тем не менее играют важнейшую роль в жизни наземной биосферы, являясь основным источником водоснабжения, орошения и обводнения.

Биосфе́ра (от др.-греч. βιος - жизнь и σφαῖρα - сфера, шар) - оболочка Земли, заселённая живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности; «пленка жизни»; глобальная экосистема Земли.

Биосфера - оболочка Земли, заселённая живыми организмами и преобразованная ими. Биосфера начала формироваться не позднее, чем 3,8 млрд. лет назад, когда на нашей планете стали зарождаться первые организмы. Она проникает во всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу. Биосфера представляет собой совокупность всех живых организмов. В ней обитает более 3 000 000 видов растений, животных, грибов и бактерий. Человек тоже является частью биосферы, его деятельность превосходит многие природные процессы и, как сказал В. И. Вернадский: «Человек становится могучей геологической силой».

Французский учёный-естествоиспытатель Жан Батист Ламарк в начале XIX в. впервые предложил по сути дела концепцию биосферы, ещё не введя даже самого термина. Термин «биосфера» был предложен австрийским геологом и палеонтологом Эдуардом Зюссом в 1875 году.

Целостное учение о биосфере создал биогеохимик и философ В. И. Вернадский. Он впервые отвёл живым организмам роль главнейшей преобразующей силы планеты Земля, учитывая их деятельность не только в настоящее время, но и в прошлом.

Существует и другое, более широкое определение: Биосфера - область распространения жизни на космическом теле. При том, что существование жизни на других космических объектах, помимо Земли пока неизвестно, считается, что биосфера может распространяться на них в более скрытых областях, например, в литосферных полостях или в подлёдных океанах. Так, например, рассматривается возможность существования жизни в океане спутника Юпитера Европы.

Биосфера располагается на пересечении верхней части литосферы, нижней части атмосферы и занимает практически всю гидросферу.

Верхняя граница в атмосфере: 15-20 км. Она определяется озоновым слоем, задерживающим коротковолновое ультрафиолетовое, губительное для живых организмов.

Нижняя граница в литосфере: 3,5-7,5 км. Она определяется температурой перехода воды в пар и температурой денатурации белков, однако в основном распространение живых организмов ограничивается вглубь несколькими метрами.

Граница между атмосферой и литосферой в гидросфере: 10-11 км. Определяется дном Мирового Океана, включая донные отложения.

Биосферу слагают следующие типы веществ:

Живое вещество - вся совокупность тел живых организмов, населяющих Землю, физико-химически едина, вне зависимости от их систематической принадлежности. Масса живого вещества сравнительно мала и оценивается величиной 2,4…3,6·1012 т (в сухом весе) и составляет менее одной миллионной всей биосферы (ок. 3·1018 т), которая, в свою очередь, представляет собой менее одной тысячной массы Земли. Но это одна «из самых могущественных геохимических сил нашей планеты», поскольку живое вещество не просто населяет биосферу, а преобразует облик Земли. Живое вещество распределено в пределах биосферы очень неравномерно.

Биогенное вещество - вещество, создаваемое и перерабатываемое живым веществом. На протяжении органической эволюции живые организмы тысячекратно пропустили через свои органы, ткани, клетки, кровь всю атмосферу, весь объём мирового океана, огромную массу минеральных веществ. Эту геологическую роль живого вещества можно представить себе по месторождениям угля, нефти, карбонатных пород и т. д.

Косное вещество - продукты, образующиеся без участия живых организмов.

Биокосное вещество, которое создается одновременно живыми организмами и косными процессами, представляя динамически равновесные системы тех и других. Таковы почва, ил, кора выветривания и т. д. Организмы в них играют ведущую роль.

Вещество, находящееся в радиоактивном распаде.

Рассеянные атомы, непрерывно создающиеся из всякого рода земного вещества под влиянием космических излучений.

Вещество космического происхождения.

Весь слой воздействия жизни на неживую природу называется мегабиосферой, а вместе с артебиосферой - пространством человекообразной экспансии в околоземном пространстве - панбиосферой.

Субстратом для жизни в атмосфере микроорганизмов (аэробионтов) служат водные капельки - атмосферная влага, источником энергии - солнечная энергия и аэрозоли. Примерно от верхушек деревьев до высоты наиболее частого расположения кучевых облаков простирается тропобиосфера (с тропобионтами; это пространство - более тонкий слой, чем тропосфера). Выше ростирается слой крайне разреженной микробиоты - альтобиосфера (с альтобионтами). Выше простирается пространство, куда организмы проникают случайно и не часто и не размножаются - парабиосфера. Выше расположена апобиосфера.

Геобиосферу населяют геобионты, субстратом, а отчасти и средой жизни для которых служит земная твердь. Геобиосфера состоит из области жизни на поверхности суши - террабиосфера (с террабионтами), разделяемую на фитосферу (от поверхности земли до верхушек деревьев) и педосферу (почвы и подпочвы; иногда сюда включают всю кору выветривания) и жизнь в глубинах Земли -литобиосфера (с литобионтами, живущими в порах горных пород, главным образом в подземных водах). На больших высотах в горах, где уже невозможна жизнь высших растений, расположена высотная часть террабиосферы - эоловая зона (с эолобионтами). Литобиосфера распадается на слой, где возможна жизнь аэробов - гипотеррабиосфера и слой, где возможно лишь обитание анаэробов - теллуробиосфера. Жизнь в неактивной форме может проникать глубже - в гипобиосферу. Метабиосфера - все биогенные и биокосные породы. Глубже расположена абиосфера.

В глубинах литосферы есть 2 теоретических уровня распространения жизни - изотерма 100 °C, ниже которой вода при нормальном атмосферном давлении вода кипит, и изотерма 460 °C, где при любом давлении вода превращается в пар, т. е. в жидком состоянии быть не может.

Гидробиосфера - весь глобальный слой воды (без подземных вод), населённый гидробионтами - распадается на слой континентальных вод - аквабиосфера (с аквабионтами) и область морей и океанов - маринобиосфера (с маринобионтами). Выделяют 3 слоя - относительно ярко освещённую фотосферу, всегда очень сумеречную дисфотосферу (до 1 % солнечной инсоляции) и слой абсолютной темноты - афотосфера.