Дайте определение понятия валентность химических элементов. Валентность

– это способность у атомов хим. элементов образовывать некоторое число химических связей. Принимает значения от 1 до 8 и не может быть равна 0. Определяется числом электронов атома затраченых на образование хим. связей с другим атомом. Валентность это реальная величина. Обозначается римскими цифрами (I ,II, III, IV, V, VI, VII, VIII).

Как можно определить валентность в соединениях:

Валентность водорода (H) постоянна всегда 1. Отсюда в соединении H2O валентность O равна 2.

Валентность кислорода (O) постоянна всегда 2. Отсюда в соединении СО2 валентность С равно 4.

Высшая валентность всегда равна № группы.

Низшая валентность равна разности между числом 8 (количество групп в Таблице Менделеева) и номером группы, в которой находится элемент.

У металлов в подгруппах А таблицы Менделеева, валентность = № группы.

У неметаллов обычно две валентности: высшая и низшая.

Валентность химических элементов может быть постоянной и переменной. Постоянная в основном у металлов главных подгрупп, переменная у неметаллов и металлов побочных подгруп.


Таблица валентности химических элементов

Атомный №

Химический элемент

Валентность химических элементов

Примеры соединений

Водород / Hydrogen

Гелий / Helium

отсутствует

Литий / Lithium

Бериллий / Beryllium

Углерод / Carbon

Азот / Nitrogen

Кислород / Oxygen

Фтор / Fluorine

отсутствует

Натрий / Sodium

Магний / Magnesium

Алюминий / Aluminum

Кремний / Silicon

Фосфор / Phosphorus

Сера / Sulfur

Хлор / Chlorine

Аргон / Argon

отсутствует

Калий / Potassium

Кальций / Calcium

Скандий / Scandium

Титан / Titanium

Ti 2 O 3 , TiH 4

Ванадий / Vanadium

Хром / Chromium

Марганец / Manganese

II, III, IV, VI, VII

Mn 2 O 7 , Mn 2 (SO 4) 3

Железо / Iron

Кобальт / Cobalt

CoI 2 , Co 2 S 3

Никель / Nickel

Медь / Copper

Галлий / Gallium

Германий / Germanium

GeBr 4 , Ge(OH) 2

Мышьяк / Arsenic

As 2 S 5 , H 3 AsO 4

Селен / Selenium

Бром / Bromine

Криптон / Krypton

Рубидий / Rubidium

Стронций / Strontium

Иттрий / Yttrium

Цирконий / Zirconium

Ниобий / Niobium

I, II, III, IV, V

Молибден / Molybdenum

II, III, IV, V, VI

Mo 2 O 5 , MoF 6

Технеций / Technetium

Рутений / Ruthenium

RuO 4 , RuF 5 , RuBr 3

Родий / Rhodium

I, II, III, IV, V

Палладий / Palladium

Серебро / Silver

AgO, AgF 2, AgNO 3

Кадмий / Cadmium

Индий / Indium

Олово / Tin

Сурьма / Antimony

Теллур / Tellurium

TeH 2 , H 6 TeO 6

Ксенон / Xenon

II, IV, VI, VIII

XeF 6 , XeO 4 , XeF 2

Цезий / Cesium

Барий / Barium

Лантан / Lanthanum

Церий / Cerium

Празеодим / Praseodymium

Неодим / Neodymium

Прометий / Promethium

Самарий / Samarium

Европий / Europium

Гадолиний / Gadolinium

Тербий / Terbium

Диспрозий / Dysprosium

Гольмий / Holmium

Эрбий / Erbium

Тулий / Thulium

Иттербий / Ytterbium

Лютеций / Lutetium

Гафний / Hafnium

Тантал / Tantalum

TaCl 5 , TaBr 2 , TaCl 4

Вольфрам / Tungsten

WBr 6 , Na 2 WO 4

Рений / Rhenium

Re 2 S 7 , Re 2 O 5

Осмий / Osmium

OsF 8 , OsI 2 , Os 2 O 3

Иридий / Iridium

Платина / Platinum

I, II, III, IV, V

Pt(SO 4) 3 , PtBr 4

Золото / Gold

AuH, Au 2 O 3 , Au 2 Cl 6

Ртуть / Mercury

Талий / Thallium

Свинец / Lead

Висмут / Bismuth

BiF 5 , Bi 2 S 3

Полоний / Polonium

Астат / Astatine

нет данных

-

Радон / Radon

отсутствует

-

Франций / Francium

-

Радий / Radium

Актиний / Actinium

Торий / Thorium

Проактиний / Protactinium

Уран / Uranium

Нептуний

Плутоний

PuO 2 , PuF 3 , PuF 4

Америций

CmO 2 , Cm 2 O 3

Калифорний

Эйнштейний

Менделевий

Лоуренсий

Валентность химических элементов

Энциклопедичный YouTube

  • 1 / 5

    Однако точное и позже полностью подтверждённое понимание феномена валентности было предложено в 1852 году химиком Эдуардом Франклендом в работе, в которой он собрал и переосмыслил все существовавшие на тот момент теории и предположения на этот счёт . Наблюдая способность к насыщению разных металлов и сравнивая состав органических производных металлов с составом неорганических соединений, Франкленд ввёл понятие о «соединительной силе » (соединительном весе ), положив этим основание учению о валентности. Хотя Франкленд и установил некоторые частные закономерности, его идеи не получили развития.

    Решающую роль в создании теории валентности сыграл Фридрих Август Кекуле . В 1857 г. он показал, что углерод является четырёхосновным (четырёхатомным) элементом, и его простейшим соединением является метан СН 4 . Уверенный в истинности своих представлений о валентности атомов, Кекуле ввёл их в свой учебник органической химии: основность, по мнению автора - фундаментальное свойство атома, свойство такое же постоянное и неизменяемое, как и атомный вес . В 1858 г. взгляды, почти совпадающие с идеями Кекуле, высказал в статье «О новой химической теории » Арчибальд Скотт Купер .

    Уже три года спустя, в сентябре 1861 г. А. М. Бутлеров внёс в теорию валентности важнейшие дополнения. Он провёл чёткое различие между свободным атомом и атомом, вступившим в соединение с другим, когда его сродство «связывается и переходит в новую форму ». Бутлеров ввёл представление о полноте использования сил сродства и о «напряжении сродства », то есть энергетической неэквивалентности связей, которая обусловлена взаимным влиянием атомов в молекуле. В результате этого взаимного влияния атомы в зависимости от их структурного окружения приобретают различное «химическое значение ». Теория Бутлерова позволила дать объяснение многим экспериментальным фактам, касавшимся изомерии органических соединений и их реакционной способности.

    Огромным достоинством теории валентности явилась возможность наглядного изображения молекулы. В 1860-х гг. появились первые молекулярные модели . Уже в 1864 г. А. Браун предложил использовать структурные формулы в виде окружностей с помещёнными в них символами элементов, соединённых линиями, обозначающими химическую связь между атомами; количество линий соответствовало валентности атома. В 1865 г. А. фон Гофман продемонстрировал первые шаростержневые модели, в которых роль атомов играли крокетные шары. В 1866 г. в учебнике Кекуле появились рисунки стереохимических моделей , в которых атом углерода имел тетраэдрическую конфигурацию.

    Первоначально за единицу валентности была принята валентность атома водорода. Валентность другого элемента можно при этом выразить числом атомов водорода, которое присоединяет к себе или замещает один атом этого другого элемента. Определенная таким образом валентность называется валентностью в водородных соединениях или валентностью по водороду: так, в соединениях HCl, H 2 O, NH 3 , CH 4 валентность по водороду хлора равна единице, кислорода – двум, азота – трём, углерода – четырём.

    Валентность кислорода, как правило, равна двум. Поэтому, зная состав или формулу кислородного соединения того или иного элемента, можно определить его валентность как удвоенное число атомов кислорода, которое может присоединять один атом данного элемента. Определенная таким образом валентность называется валентностью элемента в кислородных соединениях или валентностью по кислороду: так, в соединениях K 2 O, CO, N 2 O 3 , SiO 2 , SO 3 валентность по кислороду калия равна единице, углерода – двум, азота – трём, кремния – четырём, серы – шести.

    У большинства элементов значения валентности в водородных и в кислородных соединениях различны: например, валентность серы по водороду равна двум (H 2 S), а по кислороду шести (SO 3). Кроме того, большинство элементов проявляют в разных своих соединениях различную валентность [некоторые элементы могут не иметь ни гидридов, ни оксидов]. Наприм., углерод образует с кислородом два оксида: монооксид углерода CO и диоксид углерода CO 2 . В монооксиде углерода валентность углерода равна двум, а в диоксиде – четырём (некоторые элементы способны образовывать также пероксиды). Из рассмотренных примеров следует, что охарактеризовать валентность элемента каким-нибудь одним числом и/или методом, как правило, нельзя.

    Современные представления о валентности

    С момента возникновения теории химической связи понятие «валентность» претерпело существенную эволюцию. В настоящее время оно не имеет строгого научного толкования, поэтому практически полностью вытеснено из научной лексики и используется, преимущественно, в методических целях.

    В основном, под валентностью химических элементов обычно понимается способность свободных его атомов (в более узком смысле - мера его способности) к образованию определённого числа ковалентных связей . В соединениях с ковалентными связями валентность атомов определяется числом образовавшихся двухэлектронных двухцентровых связей. Именно такой подход принят в теории локализованных валентных связей , предложенной в 1927 году В. Гайтлером и Ф. Лондоном . Очевидно, что если в атоме имеется n неспаренных электронов и m неподелённых электронных пар , то этот атом может образовывать n + m ковалентных связей с другими атомами . При оценке максимальной валентности следует исходить из электронной конфигурации гипотетического, т. н. «возбуждённого» (валентного) состояния. Например, максимальная валентность атома бора, углерода и азота равна 4 (например, в − , CH 4 и +), фосфора - 5 (PCl 5), серы - 6 (H 2 SO 4), хлора - 7 (Cl 2 O 7).
    Число связей, которые может образовывать атом, равно числу его неспаренных электронов , идущих на образование общих электронных пар (молекулярных двухэлектронных облаков). Ковалентная связь может образовываться также по донорно-акцепторному механизму . При этом в обоих случаях не учитывается полярность образовавшихся связей , а потому валентность не имеет знака - она не может быть ни положительной, ни отрицательной, в отличие от степени окисления (N 2 , NO 2 , NH 3 и +).

    Кроме валентности по водороду и по кислороду, способность атомов данного элемента соединяться друг с другом или с атомами других элементов в ряде случаев можно выразить [часто и отождествить] иными способами: как, например, степень окисления элемента (условный заряд атома в предположении, что вещество состоит из ионов), ковалентность (число химических связей, образуемых атомом данного элемента, в том числе и с одноимённым элементом; см. ниже), координационное число атома (число атомов, непосредственно окружающих данный атом) и т. п. Эти характеристики могут быть близки и даже совпадать количественно, но ни коим образом не тождественны друг другу . Например, в изоэлектронных молекулах азота N 2 , монооксида углерода CO и цианид-ионе CN − реализуется тройная связь (то есть валентность каждого атома равна 3), однако степень окисления элементов равна, соответственно, 0, +2, −2, +2 и −3. В молекуле этана (см. рис.) углерод четырёхвалентен, как и в большинстве органических соединений, тогда как степень окисления равна −3.

    Особенно это справедливо для молекул с делокализованными химическими связями, например в азотной кислоте степень окисления азота равна +5, тогда как азот не может иметь валентность выше 4. Известное из многих школьных учебников правило - «Максимальная валентность элемента численно равна номеру группы в Периодической таблице» - относится исключительно к степени окисления. Понятия «постоянной валентности» и «переменной валентности» также преимущественно относятся к степени окисления.

    Ковалентность элемента (мера валентных возможностей элементов; ёмкость насыщения) определяется общим числом неспаренных электронов [валентных электронных пар ] как в нормальном, так и в возбуждённом состоянии атома, или, иначе говоря, число образуемых атомом ковалентных связей (углерод 2s 2 2p 2 II-ковалентен, а в возбуждённом состоянии C* 2s 1 2p 3 - IV-ковалентный; таким образом в CO и CO 2 валентность составляет II или IV, а ковалентность - II и /или IV). Так, ковалентность азота в молекулах N 2 , NH 3 , Al≡N и цианамиде Ca=N-C≡N равна трём, ковалентность кислорода в молекулах H 2 O и CO 2 - двум, ковалентность углерода в молекулах CH 4 , CO 2 и кристалле (алмаза) - четырём.

    В классическом и/или пост-квантовохимическом представлении по электронным спектрам поглощения двухатомных молекул можно определять число оптических (валентных) электронов при данной энергии возбуждения . Согласно этому методу, обратная величина тангенса угла наклона корреляционной прямой/прямых (при релевантных значениях молекулярных электронных термов, которые образованы относительными суммами атомных) соответствует числу пар валентных электронов, то есть валентности в её классическом понимании .

    Между валентностью [стехиометрической] в данном соединении, мольной массой его атомов и его эквивалентной массой существует простое соотношение, непосредственно вытекающее из атомной теории и определения понятия «эквивалентная масса ».CO - валентность , так как большинство неорганических веществ имеет немолекулярное строение, а органических - молекулярное. Нельзя отождествлять эти два понятия, даже если они численно совпадают. Широко применяется также термин «валентные электроны », то есть наиболее слабо связанные с ядром атома, чаще всего внешние электроны.

    По валентности элементов можно составлять истинные формулы соединений, и, наоборот, исходя из истинных формул можно определять валентности элементов в данных соединениях . При этом необходимо придерживаться принципа, согласно которому произведение валентности одного элемента на число его атомов равно произведению валентности второго элемента на число его атомов . Так, чтобы составить формулу оксида азота (III), следует записать сверху над символом валентности элементов N I I I {\displaystyle {\stackrel {III}{\mbox{N}}}} O I I {\displaystyle {\stackrel {II}{\mbox{O}}}} . Определив наименьший общий знаменатель и разделив его на соответствующие валентности, получим атомное соотношение азота к кислороду, а именно 2: 3. Следовательно, формула оксида азота (III) соответствует N + 3 2 O − 2 3 {\displaystyle {\stackrel {+3}{\mbox{N}}}_{2}{\stackrel {-2}{\mbox{O}}}_{3}} . Для определения валентности поступают таким же образом наоборот.

    Уровень знаний о строении атомов и молекул в XIX веке не позволял объяснить причину, по которой атомы образуют определенное число связей с другими частицами. Но идеи ученых опередили свое время, а валентность до сих пор изучается как один из основных принципов химии.

    Из истории возникновения понятия «валентность химических элементов»

    Выдающийся английский химик XIX века Эдвард Франкленд ввел термин «связь» в научный обиход для описания процесса взаимодействия атомов друг с другом. Ученый заметил, что некоторые химические элементы образуют соединения с одним и тем же количеством других атомов. Например, азот присоединяет три атома водорода в молекуле аммиака.

    В мае 1852 года Франкленд выдвинул гипотезу о том, что существует конкретное число химических связей, которые атом может образовывать с другими мельчайшими частицами вещества. Франкленд использовал фразу «соединительная сила» для описания того, что позже будет названо валентностью. Британский химик установил, сколько химических связей формируют атомы отдельных элементов, известных в середине XIX столетия. Работа Франкленда стала важным вкладом в современную структурную химию.

    Развитие взглядов

    Немецкий химик Ф.А. Кекуле доказал в 1857 году, что углерод является четырехосновным. В его простейшем соединении — метане — возникают связи с 4 атомами водорода. Термин «основность» ученый применял для обозначения свойства элементов присоединять строго определенное количество других частиц. В России данные о систематизировал А. М. Бутлеров (1861). Дальнейшее развитие теория химической связи получила благодаря учению о периодическом изменении свойств элементов. Его автор — другой выдающийся Д. И. Менделеев. Он доказал, что валентность химических элементов в соединениях и другие свойства обусловлены тем положением, которое они занимают в периодической системе.

    Графическое изображение валентности и химической связи

    Возможность наглядного изображения молекул — одно из несомненных достоинств теории валентности. Первые модели появились в 1860-х, а с 1864 года используются представляющие собой окружности с химическим знаком внутри. Между символами атомов черточкой обозначается а количество этих линий равно значению валентности. В те же годы были изготовлены первые шаростержневые модели (см. фото слева). В 1866 году Кекуле предложил стереохимический рисунок атома углерода в форме тетраэдра, который он и включил в свой учебник «Органическая химия».

    Валентность химических элементов и возникновение связей изучал Г. Льюис, опубликовавший свои труды в 1923 году после Так называются отрицательно заряженные мельчайшие частицы, которые входят в состав оболочек атомов. В своей книге Льюис применил точки вокруг четырех сторон для отображения валентных электронов.

    Валентность по водороду и кислороду

    До создания валентность химических элементов в соединениях принято было сравнивать с теми атомами, для которых она известна. В качестве эталонов были выбраны водород и кислород. Другой химический элемент притягивал либо замещал определенное количество атомов H и O.

    Таким способом определяли свойства в соединениях с одновалентным водородом (валентность второго элемента обозначена римской цифрой):

    • HCl — хлор (I):
    • H 2 O — кислород (II);
    • NH 3 — азот (III);
    • CH 4 — углерод (IV).

    В оксидах K 2 O, CO, N 2 O 3 , SiO 2 , SO 3 определяли валентность по кислороду металлов и неметаллов, удвоив число присоединяемых атомов O. Получали следующие значения: K (I), C (II), N (III), Si (IV), S (VI).

    Как определять валентность химических элементов

    Существуют закономерности образования химической связи с участием общих электронных пар:

    • Типичная валентность водорода — I.
    • Обычная валентность кислорода — II.
    • Для элементов-неметаллов низшую валентность можно определить по формуле 8 - № группы, в которой они находятся в периодической системе. Высшая, если она возможна, определяется по номеру группы.
    • Для элементов побочных подгрупп максимально возможная валентность такая же, как номер их группы в периодической таблице.

    Определение валентности химических элементов по формуле соединения проводится с использованием следующего алгоритма:

    1. Запишите сверху над химическим знаком известное значение для одного из элементов. Например, в Mn 2 O 7 валентность кислорода равна II.
    2. Вычислите суммарную величину, для чего необходимо умножить валентность на количество атомов того же химического элемента в молекуле: 2*7 = 14.
    3. Определите валентность второго элемента, для которого она неизвестна. Разделите полученную в п. 2 величину на количество атомов Mn в молекуле.
    4. 14: 2 = 7. в его высшем оксиде — VII.

    Постоянная и переменная валентность

    Значения валентности по водороду и кислороду различаются. Например, сера в соединении H 2 S двухвалентна, а в формуле SO 3 - шестивалентна. Углерод образует с кислородом монооксид CO и диоксид CO 2 . В первом соединении валентность C равна II, а во втором — IV. Такое же значение в метане CH 4 .

    Большинство элементов проявляет не постоянную, а переменную валентность, например, фосфор, азот, сера. Поиски основных причин этого явления привели к возникновению теорий химическй связи, представлений о валентной оболочке электронов, молекулярных орбиталях. Существование разных значений одного и того же свойства получило объяснение с позиций строения атомов и молекул.

    Современные представления о валентности

    Все атомы состоят из положительного ядра, окруженного отрицательно заряженными электронами. Наружная оболочка, которую они образуют, бывает недостроенной. Завершенная структура наиболее устойчива, она содержит 8 электронов (октет). Возникновение химической связи благодаря общим электронным парам приводит к энергетически выгодному состоянию атомов.

    Правилом для формирования соединений является завершение оболочки путем приема электронов либо отдачи неспаренных - в зависимости от того, какой процесс легче проходит. Если атом предоставляет для образования химической связи отрицательные частицы, не имеющие пары, то связей он образует столько, сколько у него неспаренных электронов. По современным представлениям, валентность атомов химических элементов — это способность к образованию определенного числа ковалентных связей. Например, в молекуле сероводорода H 2 S сера приобретает валентность II (-), поскольку каждый атом принимает участие в образовании двух электронных пар. Знак «-» указывает на притяжение электронной пары к более электроотрицательному элементу. У менее электроотрицательного к значению валентности дописывают «+».

    При донорно-акцепторном механизме в процессе принимают участие электронные пары одного элемента и свободные валентные орбитали другого.

    Зависимость валентности от строения атома

    Рассмотрим на примере углерода и кислорода, как зависит от строения вещества валентность химических элементов. Таблица Менделеева дает представление об основных характеристиках атома углерода:

    • химический знак — C;
    • номер элемента — 6;
    • заряд ядра — +6;
    • протонов в ядре — 6;
    • электронов — 6, в том числе 4 внешних, из которых 2 образуют пару, 2 — неспаренных.

    Если атом углерода в моноооксиде CO образует две связи, то в его пользование поступает только 6 отрицательных частиц. Для приобретения октета необходимо, чтобы пары образовали 4 внешние отрицательные частицы. Углерод имеет валентность IV (+) в диоксиде и IV (-) в метане.

    Порядковый номер кислорода — 8, валентная оболочка состоит из шести электронов, 2 из них не образуют пары и принимают участие в химической связи и взаимодействии с другими атомами. Типичная валентность кислорода — II (-).

    Валентность и степень окисления

    В очень многих случаях удобнее использовать понятие «степень окисления». Так называют заряд атома, который он приобрел бы, если бы все связывающие электроны перешли к элементу, который имеет выше значение электрооотрицательности (ЭО). Окислительное число в простом веществе равно нулю. К степени окисления более ЭО элемента добавляется знак «-», менее электроотрицательного — «+». Например, для металлов главных подгрупп типичны степени окисления и заряды ионов, равные номеру группы со знаком «+». В большинстве случаев валентность и степень окисления атомов в одном и том же соединении численно совпадают. Только при взаимодействии с более электроотрицательными атомами степень окисления положительная, с элементами, у которых ЭО ниже, — отрицательная. Понятие «валентность» зачастую применяется только к веществам молекулярного строения.

      Для того чтобы определить валентность того или иного вещества, вам нужно взглянуть на периодическую таблицу химических элементов Менделеева, обозначения римскими цифрами будут являться валентностями тех или иных веществ в этой таблице. К примеру, НО, водород (Н) будет всегда одновалентным а, а кислород (О) всегда двухвалентным. Вот ниже некая шпаргалка, которая как я полагаю поможет вам)

      В первую очередь стоит отметить, что химические элементы могут иметь как постоянную, так и переменную валентность. Что касается постоянной валентности, то такие элементы вам просто напросто необходимо заучить

      Одновалентными считаются щелочные металлы, водород, а также галогены;

      А вот трхвалентен бор и алюминий.

      Итак, теперь давайте пройдмся по таблице Менделеева для определения валентности. Самая высокая валентность для элемента всегда приравнивается к его номеру группы

      Низшая валентность же узнатся путм вычитания из 8 номера группы. Низшей валентностью наделены неметаллы в большей степени.

      Химические элементы могут быть постоянной или переменной валентности. Элементы с постоянной валентностью необходимо выучить. Всегда

      • одновалентны водород, галогены, щелочные металлы
      • двухвалентны кислород, щелочноземельные металлы.
      • трехвалентны алюминий (Al) и бор (B).

      Валентность можно определить по таблице Менделеева . Высшая валентность элемента всегда равна номеру группы, в которой он находится.

      Низшей переменной валентностью чаще всего обладают неметаллы. Чтобы узнать низшую валентность, из 8 вычитают номер группы — в результате будет искомая величина. Например, сера находится в 6 группе и е высшая валентность — VI, низшая валентность будет II (86=2).

      Согласно школьному определению валентность это способность химического элемента образовывать то или иное количество химических связей с другими атомами.

      Как известно, валентность бывает постоянной (когда химический элемент образует всегда одно и то же количество связей с другими атомами) и переменной (когда в зависимости от того или иного вещества валентность одного и того же элемента изменяется).

      Определить валентность нам поможет периодическая система химических элементов Д. И. Менделеева.

      Действуют такие правила:

      1) Максимальная валентность химического элемента равняется номеру группы. Например, хлор находится в 7-й группе, а значит, у него максимальная валентность равна 7. Сера: она в 6-й группе, значит, у не максимальная валентность равна 6.

      2) Минимальная валентность для неметаллов равна 8 минус номер группы. Например, минимальная валентность того же хлора равна 8 7, то есть 1.

      Увы, из обоих правил имеются исключения.

      Например, медь находится в 1-й группе, однако максимальная валентность меди равна не 1, а 2.

      Кислород находится в 6-й группе, но у него валентность почти всегда 2, а вовсе не 6.

      Полезно помнить ещ следующие правила:

      3) Все щелочные металлы (металлы I группы, главной подгруппы) всегда имеют валентность 1 . Например, валентность натрия всегда равна 1, потому что это щелочной металл.

      4) Все щлочно-земельные металлы (металлы II группы, главной подгруппы) всегда имеют валентность 2 . Например, валентность магния всегда равна 2, потому что это щлочно-земельный металл.

      5) Алюминий всегда имеет валентность 3.

      6) Водород всегда имеет валентность 1.

      7) Кислород практически всегда имеет валентность 2.

      8) Углерод практически всегда имеет валентность 4.

      Следует помнить, что в разных источниках определения валентности могут отличаться.

      Более или менее точно валентность можно определить как количество общих электронных пар, посредством которых данный атом связан с другими .

      Согласно такому определению, валентность азота в HNO3 равна 4, а не 5. Пятивалентным азот быть не может, потому что в таком случае вокруг атома азота кружилось бы 10 электронов. А такого не может быть, потому что максимум электронов составляет 8.

      Валентность любого химического элемента — это его свойство, а точнее свойство его атомов (атомов этого элемента) удерживать какое — то количество атомов, но уже другого хим — ого элемента.

      Существуют Хим — ие элементы как с постоянной, так и с переменной валентностью, которая меняется в зависимости от того в соединение с каким элементом он (данный элемент) находится или же вступает.

      Валентности некоторых химических элементов:

      Перейдем теперь к тому, как же определяется валентность элемента по таблице.

      Итак, валентность можно определить по таблице Менделеева :

      • высшая валентность соответстует (равна) номеру группы;
      • низшая же валентность определяется формулой: номер группы — 8.

      Из школьного курса по химии мы знаем, что все химические элементы могут быть с постоянной или же переменной валентностью. Элементы у которых постоянная валентность нужно просто запомнить (например водород, кислород, щелочные металлы и другие элементы). Валентность легко определить по таблице Менделеева, которая есть в любом учебнике по химии. Высшая валентность соответствует своему номеру группы, в которой она расположена.

      Валентность какого-либо элемента можно определить по самой таблице Менделеева, по номеру группы.

      По крайней мере, так можно поступать в случае с металлами, ведь их валентность равна номеру группы.

      С неметаллами немного другая история: их высшая валентность (в соединениях с кислородом) также равна номеру группы, а вот низшую валентность (в соединениях с водородом и металлами) нужно определять по следующей формуле: 8 — номер группы.

      Чем больше работаешь с химическими элементами, тем лучше запоминаешь и их валентность. А для начала хватит и такой шпаргалки:

      Розовым цветом выделены те элементы, чья валентность непостоянна.

      Валетность- это способность атомов одних химических элементов присоединить к себе атомы других элементов. Для успешного написания формул, правильного решения задач необходимо хорошо знать, как определить валентность. Для начала нужно выучить все элементы с постоянной валентностью. Вот они: 1. Водород, галогены, щелочные металлы(всегда одновалентны) ; 2. Кислород и щелочноземельные металлы (двухвалентны) ; 3. B и Al (трехвалентны) . Чтобы определить валентность по таблице Менделеева , нужно выяснить в какой группе стоит химический элемент и определить, находится он в основной группе или побочной.

      Элемент может иметь одну или несколько валентностей.

      Максимальная валентность элементов равна числу валентных электронов. Мы можем определить валентность, зная расположение элемента в периодической таблице. Максимальное число валентности равно номеру группы, в которой находится необходимый элемент.

      Валентность обозначается римской цифрой и, как правило, пишется в правом верхнем углу символа элемента.

      Некоторые элементы могут иметь разную валентность в разных соединениях.

      Например, сера имеет следующие валентности:

      • II в соединении H2S
      • IV в соединении SO2
      • VI в соединении SO3

      Правила определения валентности не как просты в использовании, поэтомуих нужно запомнить.

      Определять валентность по таблице Менделеева просто. Как правило она соответствует номеру группы в которой элемент расположен. Но есть элементы, которые в разных соединениях могут иметь разную валентность. В этом случае речь идет о постоянной и переменной валентности. Переменная может быть максимальной, равной номеру группы, а может быть минимальной или промежуточной.

      Но гораздо интереснее определять валентность в соединениях. Для этого существует ряд правил. Прежде всего легко определить валентность элементов если один элемент в соединении обладает постоянной валентностью, например это кислород или водород. Слева ставится восстановитель, то есть элемент с положительной валентностью, справа — окислитель, то есть элемент с отрицательной валентностью. Индекс элемента с постоянной валентностью умножается на эту валентность и делится на индекс элемента с неизвестной валентностью.

      Пример: оксиды кремния. Валентность кислорода -2. Найдем валентность кремния.

      SiO 1*2/1=2 Валентность кремния в моноксиде равна +2.

      SiO2 2*2/1=4 Валентность кремния в диоксиде равна +4.

    Одного химического элемента присоединять или замещать определённое количество атомов другого.

    За единицу валентности принята валентность атома водорода , равная 1, то есть водород одновалентен. Поэтому валентность элемента указывает на то, со сколькими атомами водорода соединён один атом рассматриваемого элемента. Например, HCl , где хлор - одновалентен; H 2O , где кислород - двухвалентен; NH 3 , где азот - трёхвалентен.

    Таблица элементов с постоянной валентностью.

    Формулы веществ можно составлять по валентностям входящих в них элементов. И наоборот, зная валентности элементов, можно составить из них химическую формулу.

    Алгоритм составления формул веществ по валентности.

    1. Записать символы элементов.

    2. Определить валентности входящих в формулу элементов.

    3. Найти наименьшее общее кратное численных значений валентности.

    4. Найти соотношения между атомами элементов путём деления найденного наименьшего общего кратного на соответствующие валентности элементов.

    5. Записать индексы элементов в химической формуле.

    Пример: составим химическую формулу оксида фосфора.

    1. Запишем символы:

    2. Определим валентности:

    4. Найдём соотношения между атомами:

    5. Запишем индексы:

    Алгоритм определения валентности по формулам химических элементов.

    1. Записать формулу химического соединения.

    2. Обозначить известную валентность элементов.

    3. Найти наименьшее общее кратное валентности и индекса.

    4. Найти соотношение наименьшего общего кратного к количеству атомов второго элемента. Это и есть искомая валентность.

    5. Сделать проверку путём перемножения валентности и индекса каждого элемента. Их произведения должны быть равны.

    Пример: определим валентность элементов сульфида водорода.

    1. Запишем формулу:

    H 2 S

    2. Обозначим известную валентность:

    H 2 S

    3. Найдём наименьшее общее кратное:

    H 2 S

    4. Найдём соотношение наименьшего общего кратного к количеству атомов серы :

    H 2 S

    5. Сделаем проверку.