Что такое равенство? Первый признак и принципы равенства. Свойства равенств, на которых основывается решение уравнений Свойства числовых равенств

Пусть событие В состоит в том, что второй извлеченный шар окажется белым. Вероятность события В можно определить по формуле полной вероятности, причем условные вероятности Р(H 1 /А) и Р(H 2 ) становятся априорными для события В , поэтому

Р(В) = Р(H 1 /А)∙Р(В/ H 1 ) + Р(H 2 /А)∙Р(В/ H 2 ) = 1/4∙4/5 + 3/4∙2/5 = 1/2.

2.6. Задачи

1. Когда возможно равенство АВ = А?

Ответ: событие А – частный случай события В .

2..gif" width="15" height="21 src=">+ С).

Ответ: А = ВС.

3. Доказать, что = А + В и .

4. Когда возможны равенства: а) А + В = , б) АВ = , в) А + В = АВ?

Ответ: а) А невозможное, а В достоверное;

б) А достоверное, а В невозможное;

5. Найти случайное событие Х из равенства: https://pandia.ru/text/80/003/images/image050_0.gif" width="12" height="23 src=">.gif" width="120 height=23" height="23"> и что А , https://pandia.ru/text/80/003/images/image128_0.gif" width="16" height="16 src="> и через А, В k и С J .

Ответ: D = А(В1 + В2 + В3 + В4) (С1 + С2) ,

8. Студент знает 20 из 25 вопросов программы. Зачет считается сданным, если студент ответит на 3 из 4 поставленных вопросов. Какова вероятность того, что студент сдаст зачет?

Ответ: р = 2109/2530 ≈ 0,834.

9. Два стрелка, для которых вероятности попадания в мишень равны соответственно 0,7 и 0,8, производят по одному выстрелу. Определить вероятность хотя бы одного попадания в мишень.

Ответ: р = 0,94.

10. Вероятность поражения первой мишени для стрелка равна 2/3. Если при первом выстреле зафиксировано попадание, то стрелок получает право на второй выстрел по другой мишени. Вероятность поражения обеих мишеней при двух выстрелах равна 0,5. Определить вероятность поражения второй мишени.

Ответ: р = 0,75.

11. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором, третьем справочнике соответственно равны 0,6; 0,7; 0,8. Найти вероятность того, что формула содержится: а) только в одном справочнике; б) только в двух справочниках; в) во всех трех справочниках.

Ответ: а) р = 0,188; б) р = 0,452; в) р = 0,336.

12. Студенты выполняют контрольную работу в классе контролирующих машин. Работа состоит из трех задач. Для получения зачета достаточно решить две задачи. Для каждой задачи зашифровано пять различных ответов, из которых только один правильный. Студент Петров плохо знает материал и поэтому выбирает ответы для каждой задачи наудачу. Какова вероятность того, что он получит зачет?

Ответ: р = 0,104.

В задачах 13–17 приведены схемы соединения элементов, образующих цепь с одним входом и одним выходом. Предполагается, что отказы элементов являются независимыми в совокупности событиями. Считаются известны надежность p k k -го элемента и, соответственно, qk = (1 - p k ) – вероятность его отказа. Отказ любого элемента приводит к прерыванию сигнала в той ветви цепи, где находится данный элемент. Вычислить надежность p каждой из схем.

13.

Ответ: р = 1 – q 1 q 2 q 3.

Ответ: р = 1 – (1 – р1р2р 3) (1 – р4р5р 6).

15.

Ответ: р = р1р4 (1 – q 2 q ­3 ).

16.

Ответ: р = (1 – q 1 q 2 ) (1 – q 3 q 4 ).

17.

Ответ: р = р5 (1 – q 1 q 2 ) (1 – q 3 q 4 ) + q 5 (р1р3 + р2р4 – р1р2р3р4 ).

18. За некоторый промежуток времени бактерия может погибнуть с вероятностью 1/4, выжить с вероятностью 1/4 и разделиться на две с вероятностью 1/2. В следующий такой же промежуток времени с каждой бактерией, независимо от ее происхождения, случается то же самое. Сколько бактерий и с какими вероятностями могут существовать к концу второго промежутка времени?

Ответ: могут существовать 0, 1, 2, 3, 4 бактерии соответственно с вероятностями 11/32, 4/32, 5/32, 4/32 и 4/32.

19. Иван и Петр по очереди каждый по m раз бросают по две игральные кости. Выигрывает тот, у кого раньше выпадет сумма очков на обеих костях, равная 8. Иван бросает первым. Найти вероятности р1 и р2 выигрыша для каждого игрока и определить, во сколько раз шансы на выигрыш Ивана выше, чем у Петра, если: а) число бросаний не ограничено и m =1; б) число бросаний не ограничено, но m = 2.

Ответ: а) р1 = 36/67; р2 = 31/67; р1/р2 = 36/31 ≈ 1,16;

б) р1 =362/(362 + 312) ≈ 0,574; р2 = 312/(362 + 312) ≈ 0,426; р1/р2 = 62/312 ≈ ≈ 1,35.

20. Для разрушения моста достаточно попадания одной авиационной бомбы. Найти вероятность того, что мост будет разрушен, если на него сбросить 4 бомбы, вероятности попаданий которых соответственно равны 0,3; 0,4; 0,5 и 0,6.

Ответ: р = 0,916.

21. Вероятность хотя бы одного попадания в цель при четырех выстрелах равна 0,9919. Найти вероятность попадания в цель при одном выстреле.

Ответ: р = 0,7.

22. В продажу поступают телевизоры трех заводов. Продукция первого завода содержит 20 % телевизоров со скрытым дефектом, второго – 10 %, третьего – 5 %. Какова вероятность приобрести исправный телевизор, если в магазин поступили 30 % телевизоров с первого завода, 20 % – со второго и 50 % – с третьего?

Ответ: р = 0,895.

23. По самолету производятся три одиночных выстрела. Вероятность попадания при первом выстреле равна 0,4, при втором – 0,5, при третьем – 0,7. Для выхода самолета из строя заведомо достаточно трех попаданий; при одном попадании самолет выходит из строя с вероятностью 0,2, а при двух попаданиях с вероятностью 0,6. Найти вероятность того, что в результате трех выстрелов самолет будет выведен из строя.

Ответ: р = 0,458.

24. В первой урне содержится 10 шаров, из них 8 белых; во второй урне 20 шаров из них 4 белых. Из каждой урны наудачу извлекли по одному шару, а затем из этих двух шаров наудачу взят один шар. Найти вероятность того, что будет взят не белый шар.

Ответ: р = 0,5.

25. В первой урне содержится 6 белых и 4 черных шара, во второй урне 3 белых и 2 черных, из первой урны наудачу извлекают сразу 3 шара, и шары того цвета, которые окажутся в большинстве, опускают во вторую урну и тщательно перемешивают. После этого из второй урны наудачу извлекают 1 шар. Какова вероятность того, что этот шар будет белым?

Ответ: р = 349/560 ≈ 0,623.

26. Для поиска месторождения нефти на заданной территории организовано n геологических партий, каждая из которых не зависимо от других обнаруживает залежь с вероятностью р . После обработки и анализа сейсмографических записей вся территория была поделена на два района. В первом районе нефть может залегать с вероятностью р1 , а во втором – с вероятностью 1 - р1 . Как следует распределить n геологических партий по двум районам, чтобы вероятность обнаружения нефти была максимальной?

Ответ: в первый район следует послать k 0 геологических партий, где k 0 – ближайшее целое к числу [n /2 + (ln ((1 – р1 )/р1 ))/2ln (1 – р )]. Пусть событие А – на заданной территории нефть обнаружена. Тогда

Р(А) = 1 – р1 (1 – р )k – (1 – р1 ) (1 – р )n - k , где k – число геологических партий, посланных в первый район. Далее рассмотреть функцию

f (x ) = 1 – р1 (1 – р )х – (1 – р1 ) (1 – р )n и найти ее максимум при х Î.

27. В пирамиде 10 винтовок, из которых 4 снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,8. Стрелок поразил мишень из наудачу взятой винтовки. Что вероятней: стрелок стрелял из винтовки с оптическим прицелом или без него?

Ответ: вероятнее, что винтовка была без оптического прицела (вероятность того, что винтовка была без оптического прицела, равна 24/43, а с оптическим прицелом – 19/43).

28. Три стрелка производят по одному выстрелу в одну и ту же мишень. Вероятности попадания в мишень при одном выстреле для каждого из стрелков соответственно равны р1, р2, р3 . Какова вероятность того, что второй стрелок промахнулся, если после выстрелов в мишени оказалось две пробоины?

Ответ: р = [(1 – р2 ) р1 р3 ] / [(1 – р1 ) р2 р3 + (1 – р2 ) р1 р3 + (1 – р3 ) р1 р2 ].

29. В группе из 25 человек, пришедших сдавать экзамены по теории вероятностей, имеется 10 отличников, 7 подготовленных хорошо, 5 удовлетворительно и 3 человека подготовлены плохо. Отличники знают все 25 вопросов программы, хорошо подготовленные – 20, подготовленные удовлетворительно – 15, плохо подготовленные знают лишь 10 вопросов. Вызванный наудачу студент ответил на 2 заданных вопроса. Найти вероятности следующих событий: S 1 = {студент подготовлен отлично или хорошо), S 2 = {студент подготовлен удовлетворительно}, S 3 = {студент подготовлен плохо}.

Ответ: Р (S1) ≈ 0,8677, Р (S2) ≈ 0,1052, Р (S3) ≈ 0,0271.

30. Из 18 стрелков 5 попадают в мишень с вероятностью 0,8; 7 – с вероятностью 0,7; 4 – с вероятностью 0,6; 2 – с вероятностью 0,5. Наудачу выбранный стрелок произвел выстрел, но в мишень не попал. К какой из групп вероятнее всего принадлежал этот стрелок?

Ответ: стрелок из второй группы.

§ 3. ПОСЛЕДОВАТЕЛЬНОСТЬ НЕЗАВИСИМЫХ ИСПЫТАНИЙ

3.1. Повторение опытов. Формула Бернулли

При практическом применении теории вероятностей часто приходится встречаться с задачами, в которых один и тот же опыт или аналогичные опыты повторяются неоднократно.

В результате каждого опыта может появиться или не появиться событие А , причем нас будет интересовать не результат каждого опыта, а общий результат, то есть число появлений события А в данной серии опытов.

Например, если производится несколько выстрелов по мишени, то нас будет интересовать не результат каждого выстрела, а общее число попаданий. В подобных задачах нужно уметь находить вероятность любого числа появлений события А . Эти задачи решаются весьма просто, если опыты независимы. Опыты являются независимыми, если исход каждого опыта не зависит от исхода других. Например, несколько последовательных бросаний монеты представляют собой независимые опыты. Если вероятность появления события А в каждом опыте неизменна, т. е. условия опытов одинаковы, то к этому случаю относится частная теорема о повторении опытов. Если же вероятность появления события А от опыта к опыту изменяется, т. е. условия опытов различны, то к этому случаю относится общая теорема. Опыты (испытания), в которых вероятность появления события А остается неизменной, называются испытаниями Бернулли. В каждом испытании Бернулли возможны два и только два исхода – появление события А («успех») и непоявление события А («неудача»). Вероятности «успеха» и «неудачи» обозначаются соответственно буквами p и q . Очевидно, что p + q = 1.

Пусть производится n независимых опытов, в каждом из которых может появиться событие А с вероятностью, равной р и, следовательно, с вероятностью, равной q = 1 – р , событие А может не появиться. Определим вероятность Р n (m ) того, что в этих n испытаниях событие А появится ровно m раз. Рассмотрим событие Bm , состоящее в том, что в n испытаниях событие А появится ровно m раз и, следовательно, n m раз событие А не появится.

Обозначим через А i появление события А в i -м опыте, а через https://pandia.ru/text/80/003/images/image138_0.gif" width="314" height="29">

причем в каждое произведение событие А должно входить m раз, а должно входить n m раз. Число таких слагаемых равно, то есть чис-

лу способов, какими можно из n опытов выбрать m , в которых произошло событие А . По теоремам умножения и сложения вероятностей имеем:

https://pandia.ru/text/80/003/images/image141_0.gif" width="24" height="24">

Таким образом, имеем следующую теорему: если производится n независимых опытов, в каждом из которых событие А появится с вероятностью, равной р , то вероятность того, что событие А появится ровно m раз, выражается формулой Бернулли

, (3.1)

где q = 1 – p ,

.

В связи с тем, что вероятности, определяемые формулой (3.1), представляют собой члены разложения бинома (q + p )n, то распределение (3.1) называется биномиальным распределением .

На данном уроке вы вместе с лягушкой познакомитесь с математическими понятиями: «равенство» и «неравенство», а также со знаками сравнения. На веселых и интересных примерах научитесь сравнивать группы фигур с помощью составления пар и сравнивать числа с помощью числового луча.

Тема: Знакомство с основными понятиями в математике

Урок: Равенство и неравенство

На данном уроке мы познакомимся с математическими понятиями: «равенство» и «неравенство» .

Попробуйте ответить на вопрос:

У стены стоят кадушки,

В каждой ровно по лягушке.

Если б было пять кадушек,

Сколько б было в них лягушек? (рис. 1)

Рис. 1

В стихотворении говорится, что кадушек было 5, в каждой кадушке по 1 лягушке, никто не остался без пары, значит число лягушек равно числу кадушек.

Обозначим кадушки буквой К, а лягушек - буквой Л.

Запишем равенство: К = Л. (рис. 2)

Рис. 2

Сравните по количеству две группы фигур. Фигур много, они разного размера, расположены без порядка. (рис. 3)

Рис. 3

Составим из этих фигур пары. Каждый квадрат соединим с треугольником. (рис. 4)

Рис. 4

Два квадрата остались без пары. Значит, количество квадратов не равно количеству треугольников. Обозначим квадраты буквой К, а треугольники - буквой Т.

Запишем неравенство: К ≠ Т. (рис. 5)

Рис. 5

Вывод : сравнивать количество элементов в двух группах можно, составляя пары. Если всем элементам хватает пары, то соответствующие числа равны , в этом случае ставим между цифрами или буквами знак равно . Эта запись называется равенством . (рис. 6)

Рис. 6

Если не хватает пары, то есть остаются лишние предметы, то эти числа неравны . Ставим между числами или буквами знак неравно . Эта запись называется неравенством. (рис. 7)

Рис. 7

Оставшиеся без пары элементы показывают, какое из двух чисел больше и на сколько. (рис. 8)

Рис. 8

Способ сравнения групп фигур с помощью составления пар не всегда удобен и занимает много времени. Можно сравнивать числа с помощью числового луча. (рис. 9)

Рис. 9

Сравните данные числа с помощью числового луча и поставьте знак сравнения.

Нужно сравнить числа 2 и 5. Посмотрим на числовой луч. Число 2 находится ближе к 0, чем число 5, или говорят, число 2 на числовом луче левее, чем число 5. Значит, 2 не равно 5. Это неравенство.

Знак «≠» (не равно) лишь фиксирует неравенство чисел, но не указывает, какое из них больше, а какое - меньше.

Из двух чисел на числовом луче меньшее расположено левее, а большее - правее. (рис. 10)

Рис. 10

Можно данное неравенство записать по-другому, используя знак меньше « < » или знак больше « > » :

На числовом луче число 7 находится правее, чем число 4, следовательно:

7 ≠ 4 и 7 > 4

Числа 9 и 9 равны, поэтому ставим знак =, это равенство:

Сравните количество точек и число и поставьте соответствующий знак. (рис. 11)

Рис. 11

На первом рисунке нам необходимо поставить знак = или ≠ .

Сравниваем две точки и число 2, ставим между ними знак =. Это равенство.

Сравниваем одну точку и число 3, на числовом луче число 1 находится левее, чем число 3, ставим знак ≠.

Сравниваем четыре точки и 4. Между ними ставим знак =. Это равенство.

Сравниваем три точки и число 4. Три точки - это число 3. На числовом луче оно левее, ставим знак ≠. Это неравенство. (рис. 12)

Рис. 12

На втором рисунке между точками и числами надо поставить знаки = , <, >.

Сравним пять точек и число 5. Между ними ставим знак =. Это равенство.

Сравним три точки и число 3. Здесь тоже можно поставить знак =.

Сравним пять точек и число 6. На числовом луче число 5 левее, чем число 6. Ставим знак <. Это неравенство.

Сравним две точки и единицу, число 2 правее на числовом луче, чем число 1. Ставим знак >. Это неравенство. (рис. 13)

Рис. 13

Вставьте в окошко число, чтобы полученное равенство и неравенство стали верными.

Это неравенство. Посмотрим на числовой луч. Раз мы ищем число меньше, чем число 7, значит оно должно быть левее числа 7 на числовом луче. (рис. 14)

Рис. 14

В окошко можно вставить несколько чисел. Сюда подходят числа 0, 1, 2, 3, 4, 5, 6. Любое из них можно подставить в окошко и получить несколько верных неравенства. Например, 5 < 7 или 2 < 7

На числовом луче найдём числа, которые будут меньше 5. (рис. 15)

Рис. 15

Это числа 4, 3, 2, 1, 0. Следовательно, любое из этих чисел можно подставить в окошко, мы получим несколько верных неравенств. Например, 5 >4, 5 >3

В можно подставить только одно число 8.

На данном уроке мы познакомились с математическими понятиями: «равенство» и «неравенство», научились правильно расставлять знаки сравнения, потренировались сравнивать группы фигур с помощью составления пар и сравнивать числа с помощью числового луча, что поможет в дальнейшем изучении математики.

Список литературы

  1. Александрова Л.А., Мордкович А.Г. Математика 1 класс. - М: Мнемозина, 2012.
  2. Башмаков М.И., Нефедова М.Г. Математика. 1 класс. - М: Астрель, 2012.
  3. Беденко М.В. Математика. 1 класс. - М7: Русское слово, 2012.
  1. Igraem.pro ().
  2. Slideshare.net ().
  3. Iqsha.ru ().

Домашнее задание

1. Какие знаки сравнения вы знаете, в каких случаях они используются? Запишите знаки сравнения чисел.

2. Сравните количество предметов на рисунке и поставьте знак «<», «>» или «=».

3. Сравни числа, поставив знак «<», «>» или «=».

50. Свойства равенств, на которых основывается решение уравнений . Возьмем какое-нибудь уравнение, не очень сложное, например:

7x – 24 = 15 – 3x

x/2 – (x – 3)/3 – (x – 5)/6 = 1

Мы видим в каждом уравнении знак равенства: все то, что написано слева от знака равенства, называется левою или первою частью уравнения (в первом уравнении 7x – 24 является левою или первою частью, а во втором x/2 – (x – 3)/3 – (x – 5)/6 есть первая, или левая, часть); все то, что написано справа от знака равенства, называется правою или второю частью уравнения (15 – 3x есть правая часть первого уравнения, 1 является правою, или вторю, частью 2-го уравнения).

Каждая часть любого уравнения выражает собою некоторое число. Числа, выражаемые левою и правою частью уравнения, должны быть равны между собою. Нам ясно: если мы к каждому из этих чисел прибавим по одинаковому числу, либо вычтем из них по одинаковому числу, либо каждое из них умножим на одинаковое число, либо, наконец, разделим на одно и то же число, то результаты этих действий должны также быть равными между собою. Другими словами: если a = b, то a + c = b + c, a – c = b – c, ac = bc и a/c = b/c. По поводу деления следует, однако, иметь в виду, что в арифметике не имеется деления на нуль - мы не умеем, например, число 5 разделить на нуль. Поэтому в равенстве a/c = b/c число c не может быть равным нулю.

  1. К обеим частям уравнения можно прибавить или из них вычесть по одинаковому числу.
  2. Обе части уравнения можно умножить или разделить на одно и то же число, исключая случай, когда это число может оказаться равным нулю.

Пользуясь этими свойствами уравнения, мы можем найти удобный способ решать уравнения. Выясним этот случай на примерах.

Пример 1. Пусть надо решить уравнение

5x – 7 = 4x + 15.

Мы видим, что первая часть уравнения содержит два члена; один из них 5x, содержащий неизвестный множитель x, можно назвать неизвестным членом, а другой –7 – известным. Во второй части уравнения также 2 члена: неизвестный 4x и известный +15. Сделаем так, чтобы в левой части уравнения оказались только неизвестные члены (а известный член –7 уничтожился бы), а в правой части оказались бы только известные члены (а неизвестный член +4x уничтожился бы). Для этой цели прибавим к обеим частям уравнения одинаковые числа: 1) прибавим по +7 (чтобы уничтожился член –7) и 2) прибавим по –4x (чтобы уничтожился член +4x). Тогда получим:

5x – 7 + 7 – 4x = 4x + 15 + 7 – 4x

Сделав в каждой части уравнения приведение подобных членов, получим

Это равенство и является решением уравнения, так как оно указывает, что для x надо взять число 22.

Пример 2. Решить уравнение:

8x + 11 = 7 – 4x

Опять прибавим к обеим частям уравнения по –11 и по +4x, получим:

8x + 11 – 11 + 4x = 7 – 4x – 11 + 4x

Выполнив приведение подобных членов, получим:

Разделим теперь обе части уравнения на +12, получим:

x = –4/12 или x = –1/3

(первую часть уравнения 12x разделить на 12 – получим 12x/12 или просто x; вторую часть уравнения –4 разделить на +12 – получим –4/12 или –1/3).

Последнее равенство и является решением уравнения, так как оно указывает, что для x надо взять число –1/3.

Пример 3. Решить уравнением

x – 23 = 3 · (2x – 3)

Раскроем сначала скобки, получим:
x – 23 = 6x – 9

Прибавим к обеим частям уравнения по +23 и по –6x, – получим:

x – 23 + 23 – 6x = 6x – 9 + 23 – 6x.

Теперь, для того, чтобы впоследствии ускорить процесс решения уравнения, не будем сразу выполнять приведение всех подобных членов, а только заметим, что члены –23 и +23 в левой части уравнения взаимно уничтожаются, также члены +6x и –6x в первой части взаимно уничтожаются – получим:

x – 6x = –9 + 23.

Сравним это уравнение с начальным: вначале было уравнение:

x – 23 = 6x – 9

Теперь получили уравнение:

x – 6x = –9 + 23.

Мы видим, что в конце концов оказалось, что член –23, находившийся сначала в левой части уравнения, теперь как бы перешел в правую часть уравнения, причем у него переменился знак (в левой части начального уравнения был член –23, теперь его там нет, но зато в правой части уравнения имеется член + 23, которого там раньше не было). Так же точно в правой части уравнения был член +6x, теперь его там нет, но появился зато в левой части уравнения член –6x, которого раньше там не было. Рассматривая с этой точки зрения примеры 1 и 2, мы придем к общему заключению:

Можно любой член уравнения перенести из одной части в другую, меняя знак у этого члена (в дальнейших примерах мы будем этим пользоваться).

Итак, возвращаясь к нашему примеру, мы получили уравнение

x – 6x = –9 + 23

Разделим обе части уравнения на –5. Тогда получим:

[–5x: (–5) получим x] – это и есть решение нашего уравнения.

Пример 4. Решить уравнение:

Сделаем так, чтобы в уравнении не было дробей. Для этой цели найдем общего знаменателя для наших дробей – общим знаменателем служит число 24 – и умножим на него обе части нашего уравнения (можно, ведь, чтобы равенство не нарушалось, умножить на одно и то же число только обе части уравнения). В первой части 3 члена, причем каждый член является дробью - надо, следовательно, каждую дробь умножить на 24: вторая часть уравнения есть 0, а нуль умножить на 24 - получим нуль. Итак,

Мы видим, что каждая из наших трех дробей, благодаря тому, что она умножена на общее наименьшее кратное знаменателей этих дробей, сократится и сделается целым выражением, а именно получим:

(3x – 8) · 4 – (2x – 1) · 6 + (x – 7) · 3 = 0

Конечно, желательно все это выполнить в уме: надо вообразить, что, например, числитель первой дроби заключается в скобки и умножается на 24, после чего воображение поможет нам увидеть сокращение это дроби (на 6) и конечный результат, т. е. (3x – 8) · 4. Тоже имеет место и для остальных дробей. Раскроем теперь в полученном уравнении (в его левой части) скобки:

12x – 32 – 12x + 6 + 3x – 21 = 0

(обратим внимание, что здесь понадобилось двучлен 2x – 1 умножить на 6 и полученное произведение 12x – 6 вычесть из предыдущего, благодаря чему знаки членов этого произведения должны перемениться - выше и написано –12x + 6). Перенесем известные члены (т. е. –32, +6 и –21) из левой части уравнения в его правую часть, причем (как мы уже знаем) знаки этих членов должны перемениться - получим:

12x – 12x + 3x = 32 – 6 + 21.

Выполним приведение подобных членов:

(при навыке должно сразу выполняться и перенесение нужных членов из одной части уравнения в другую и приведение подобных членов), разделим, наконец, обе части уравнения на 3 - получим:

x = 15(2/3) - это и есть решение уравнения.

Пример 5. Решить уравнение:

5 – (3x + 1)/7 = x + (2x – 3)/5

Здесь две дроби, и их общий знаменатель равен 35. Умножим, чтобы освободить уравнение от дробей, обе части уравнения на общего знаменателя 35. В каждой части нашего уравнения 2 члена. При умножении каждой части на 35 должно каждый член умножить на 35 - получим:

Дроби сократятся - получим:

175 – (3x + 1) · 5 = 35x + (2x – 3) · 7

(конечно, можно было бы при навыке написать сразу это уравнение).

Выполним все действия:

175 – 15x – 5 = 35x + 14x – 21.

Перенесем все неизвестные члены из правой части (т. е. члены +35x и +14x) в левую, а все известные члены из левой части (т. е. члены +175 и –5) в правую - следует при этом не забывать у переносимых членов менять знак:

–15x – 35x – 14x = –21 – 175 + 5

(член –15x, как раньше был в левой части, так и теперь в ней остался - у него поэтому отнюдь не следует менять знака; аналогичное имеет место и для члена –21). Сделав приведение подобных членов, получим:

–64x = –191.

[Возможно сделать так, чтобы не было знака минус в обеих частях уравнения; для этого умножим обе части уравнения на (–1), получим 64x = 191, но этого можно и не делать.]
Разделим затем обе части уравнения на (–64), получим решение нашего уравнения

[Если умножили обе части уравнения на (–1) и получили уравнение 64x = 191, то теперь надо обе части уравнения разделить на 64.]

На основании того, что пришлось выполнять в примерах 4 и 5, мы можем установить: можно освободить уравнение от дробей - для этого надо найти общего знаменателя для всех дробей, входящих в уравнение (или наименьшее общее кратное знаменателей всех дробей) и на него умножить обе части уравнения - тогда дроби должны исчезнуть.

Пример 6. Решить уравнение:

Перенеся член 4x из правой части уравнения в левую, получим:

5x – 4x = 0 или x = 0.

Итак, решение найдено: для x надо взять число нуль. Если мы заменим в данном уравнении x нулем, получим 5 · 0 = 4 · 0 или 0 = 0, что указывает на выполнение требования, выражаемого данным уравнением: найти такое число для x, чтобы одночлен 5x оказался равен тому же самому числу, как и одночлен 4x.

Если кто-либо подметит с самого начала, что обе части уравнения 5x = 4x можно разделить на x и выполнит это деление, то получится явная несообразность 5 = 4! Причиною этого является то обстоятельство, что деление 5x/x в данном случае выполнить нельзя, так как, мы видели выше, вопрос, выражаемый нашим уравнением, требует, чтобы x = 0, а деление на нуль не выполнимо.

Заметим еще, что и умножение на нуль требует некоторой внимательности: умножая на нуль и два неравных числа, мы получим в результате этих умножений равные произведения, а именно - нули.

Если, например, мы имеем уравнение

x – 3 = 7 – x (его решение: x = 5)

и если кто-либо захочет к нему применить свойство «обе части уравнения можно умножить на одно и тоже число» и умножить обе части на x, то получит:

x 2 – 3x = 7x – x 2 .

После этого может обратить на себя внимание, что все члены уравнения содержат множителя x, из чего можно сделать заключение, что для решения этого уравнения можно взять число нуль, т. е. положить x = 0. И в самом деле, тогда получим:
0 2 – 3 · 0 = 7 · 0 – 0 2 или 0 = 0.

Однако, это решение x = 0, очевидно, не годится для данного уравнения x – 3 = 7 – x; заменяя в нем x нулем, получим явную несообразность: 3 = 7!

Два числовых математических выражения, соединенные знаком «=» называют равенством.

Например: 3 + 7 = 10 - равенство.

Равенство может быть верным и неверным.

Смысл решения любого примера состоит в том, чтобы найти та­кое значение выражения, которое превращает его в верное равенство.

Для формирования представлений о верных и неверных равенствах в учебнике 1 класса используются примеры с окошком.

Например:

Методом подбора ребенок находит подходящие числа и проверяет верность равенства вычислением.

Процесс сравнения чисел и обозначение отношений между ними с помощью знаков сравнения приводит к получению неравенств.

Например: 5 < 7; б > 4 - числовые неравенства

Неравенства также могут быть верными и неверными.

Например:

Методом подбора ребенок находит подходящие числа и проверяет верность неравенства.

Числовые неравенства получаются при сравнении числовых выражений и числа.

Например:

При выборе знака сравнения ребенок вычисляет значение выражения и сравнивает его с заданным числом, что отражается в выборе соответствующего знака:

10-2>7 5+К7 7 + 3>9 6-3 = 3

Возможен другой способ выбора знака сравнения - без ссылки на вычисления значения выражения.

Наппимеп:

Сумма чисел 7 и 2 будет заведомо больше, чем число 7, значит, 7 + 2 > 7.

Разность чисел 10 и 3 будет заведомо меньше, чем число 10, значит, 10 - 3 < 10.

Числовые неравенства получаются при сравнении двух числовых выражений.

Сравнить два выражения - значит сравнить их значения. Например:

При выборе знака сравнения ребенок вычисляет значения выражений и сравнивает их, что отражается в выборе соответствующего знака:

Возможен другой способ выбора знака сравнения - без ссылки на вычисления значения выражения. Например:

Для постановки знаков сравнения можно провести такие рассуждения:

Сумма чисел 6 и 4 больше суммы чисел 6 и 3, поскольку 4 > 3, значит, 6 + 4 > 6 + 3.

Разность чисел 7 и 5 меньше, чем разность чисел 7 и 3, поскольку 5 > 3, значит, 7 - 5 < 7 - 3.

Частное чисел 90 и 5 больше, чем частное чисел 90 и 10, поскольку при делении одного и того же числа на число большее, частное получается меньшее, значит, 90: 5 > 90:10.

Для формирования представлений о верных и неверных равенствах и неравенствах в новой редакции учебника (2001) используются задания вида:

Для проверки используется метод вычисления значения выражений и сравнения полученных чисел.

Неравенства с переменной практически не используются в последних редакциях стабильного учебника математики, хотя в более ранних изданиях они присутствовали. Неравенства с переменными активно используются в альтернативных учебниках математики. Это неравенства вида:

 + 7 < 10; 5 -  > 2;  > 0;  > О

После введения буквы для обозначения неизвестного числа такие неравенства приобретают привычный вид неравенства с переменной:

а + 7>10; 12-d<7.

Значения неизвестных чисел в таких неравенствах находятся методом подбора, а затем подстановкой проверяется каждое подобранное число. Особенность данных неравенств состоит в том, что могут быть подобраны несколько чисел, подходящих к ним (дающих верное неравенство).

Например: а + 7 > 10; а = 4, а = 5 , а = 6 и т. д. - количество значений для буквы а бесконечно, для данного неравенства подхо­дит любое число а > 3; 12 - d < 7; d = 6, d = 7, d = 8, d = 9, d = 10, d = 11, d = 12 - количество значений для буквы d конечно, все значения могут быть перечислены. Ребенок подставляет каждое найденное значение переменной в выражение, вычисляет значение выражения и сравнивает его с заданным числом. Выбираются те значения переменной, при которых неравенство является верным.

В случае бесконечного множества решений или большого количества решений неравенства ребенок ограничивается подбором нескольких значений переменной, при которых неравенство является верным.

«Равенство» - это тема, которую ученики проходят еще в начальной школе. Сопутствует ей также ей «Неравенства». Эти два понятия тесно взаимосвязаны. Кроме того, с ними связывают такие термины, как уравнения, тождества. Итак, что такое равенство?

Понятие равенства

Под этим термином понимают высказывания, в записи которых есть знак «=». Равенства разделяются на верные и неверные. Если в записи вместо = стоит <, >, тогда речь идет о неравенствах. Кстати, первый признак равенства говорит о том, что обе части выражения идентичны по своему результату или записи.

Кроме понятия равенства, в школе изучают также тему «Числовое равенство». Под этим высказыванием понимают два числовых выражения, которые стоят по обе стороны от знака =. К примеру, 2*5+7=17. Обе части записи равны между собой.

В числовых выражениях подобного типа могут использоваться скобки, влияющие на порядок действий. Итак, существует 4 правила, которые следует учесть при вычислении результатов числовых выражений.

  1. Если в записи нет скобок, тогда действия выполняются с высшей ступени: III→II→I. Если есть несколько действий одной категории, тогда они выполняются слева направо.
  2. Если в записи есть скобки, тогда действие выполняется в скобках, а затем с учетом ступеней. Возможно, в скобках будет несколько действий.
  3. Если выражение представлено в виде дроби, тогда вычислять нужно сначала числитель, потом знаменатель, затем числитель делится на знаменатель.
  4. Если в записи есть вложенные скобки, тогда вычисляется сначала выражение во внутренних скобках.

Итак, теперь понятно, что такое равенство. В дальнейшем будут рассмотрены понятия уравнения, тождества и способы их вычисления.

Свойства числовых равенств

Что такое равенство? Изучение этого понятия требует знания свойств числовых тождеств. Приведенные ниже текстовые формулы позволяют лучше изучить данную тему. Конечно, эти свойства больше подходят для изучения математики в старших классах.

1. Числовое равенство не будет нарушено, если в обеих его частях прибавить одно и то же число к существующему выражению.

А = В ↔ А + 5 = В + 5

2. Не будет нарушено уравнение, если обе его части умножить или разделить на одно и то же число или выражение, которые отличны от нуля.

Р = О ↔ Р ∙ 5 = О ∙ 5

Р = О ↔ Р: 5 = О: 5

3. Прибавив к обеим частям тождества одинаковую функцию, которая имеет смысл при любых допустимых значениях переменной, мы получим новое равенство, равносильное первоначальному.

F(X) = Ψ (X) F(X) + R(X) = Ψ (X) + R(X)

4. Любое слагаемое или выражение можно перенести по другую сторону знака равенства, при этом нужно поменять знаки на противоположные.

Х + 5 = У - 20 Х = У - 20 - 5 Х = У - 25

5. Умножив или разделив обе части уравнения на одну и ту же функцию, отличную от нуля и имеющую смысл для каждого значения Х из ОДЗ, мы получим новое уравнение, равносильное первоначальному.

F(X) = Ψ(X) F(X) ∙ R(X) = Ψ(X) ∙ R(X)

F(X) = Ψ (X) F(X) : G(X) = Ψ (X) : G(X)

Приведенные правила в явной степени указывают на принцип равенства, который существует при определенных условиях.

Понятие пропорции

В математике существует такое понятие, как равенство отношений. В этом случае подразумевается определение пропорции. Если разделить А на В, то результатом будет отношение числа А к числу В. Пропорцией называют равенство двух отношений:

Иногда пропорция записывается следующим образом: A: B = C: D. Отсюда вытекает основное свойство пропорции: A * D = D * C , где A и D - крайние члены пропорции, а В и С - средние.

Тождества

Тождеством называют равенство, которое будет верно при всех допустимых значениях тех переменных, которые входят в задание. Тождества могут быть представлены как буквенные или числовые равенства.

Тождественно равными называются выражения, содержащие в обеих частях равенства неизвестную переменную, которая способна приравнять две части одного целого.

Если проводить замены одного выражения другим, которое будет равно ему, тогда речь идет о тождественном преобразовании. В этом случае можно воспользоваться формулами сокращенного умножения, законами арифметики и прочими тождествами.

Чтобы сократить дробь, нужно провести тождественные преобразования. К примеру, дана дробь. Чтобы получить результат, следует воспользоваться формулами сокращенного умножения, разложением на множители, упрощением выражений и сокращением дробей.

При этом стоит учесть, что данное выражение будет тождественным тогда, когда знаменатель не будет равен 3.

5 способов доказать тождество

Чтобы доказать равенство тождественное, нужно провести преобразование выражений.

I способ

Необходимо провести равносильные преобразования в левой части. В результате получается правая часть, и можно говорить о том, что тождество доказано.

II способ

Все действия по преобразованию выражения происходят в правой части. Итогом проделанных манипуляций является левая часть. Если обе части идентичны, то тождество доказано.

III способ

«Трансформации» происходят в обеих частях выражения. Если в результате получатся две идентичные части, тождество доказано.

IV способ

Из левой части вычитается правая. В результате равносильных преобразований должен получиться нуль. Тогда можно говорить о тождественности выражения.

V способ

Из правой части вычитается левая. Все равносильные преобразования сводятся к тому, чтобы в ответе стоял нуль. Только в таком случае можно говорить о тождественности равенства.

Основные свойства тождеств

В математике зачастую используют свойства равенств, чтобы ускорить процесс вычисления. Благодаря основным алгебраическим тождествам процесс вычисления некоторых выражений займет считанные минуты вместо долгих часов.

  • Х + У = У + Х
  • Х + (У + С) = (Х + У) + С
  • Х + 0 = Х
  • Х + (-Х) = 0
  • Х ∙ (У + С) = Х∙У + Х∙С
  • Х ∙ (У - С) = Х∙У - Х∙С
  • (Х + У) ∙ (С + Е) = Х∙С + Х∙Е + У∙С + У∙Е
  • Х + (У + С) = Х + У + С
  • Х + (У - С) = Х + У - С
  • Х - (У + С) = Х - У - С
  • Х - (У - С) = Х - У + С
  • Х ∙ У = У ∙ Х
  • Х ∙ (У ∙ С) = (Х ∙ У) ∙ С
  • Х ∙ 1 = Х
  • Х ∙ 1/Х = 1, где Х ≠ 0

Формулы сокращенного умножения

По своей сути формулы сокращенного умножения являются равенствами. Они помогают решить множество задач в математике благодаря своей простоте и легкости в обращении.

  • (А + В) 2 = А 2 + 2∙А∙В + В 2 - квадрат суммы пары чисел;
  • (А - В) 2 = А 2 - 2∙А∙В + В 2 - квадрат разности пары чисел;
  • (С + В) ∙ (С - В) = С 2 - В 2 - разность квадратов;
  • (А + В) 3 = А 3 + 3∙А 2 ∙В + 3∙А∙В 2 + В 3 - куб суммы;
  • (А - В) 3 = А 3 - 3∙А 2 ∙В + 3∙А∙В 2 - В 3 - куб разности;
  • (Р + В) ∙ (Р 2 - Р∙В + В 2) = Р 3 + В 3 - сумма кубов;
  • (Р - В) ∙ (Р 2 + Р∙В + В 2) = Р 3 - В 3 - разность кубов.

Формулы сокращенного умножения зачастую применяются, если необходимо привести многочлен к привычному виду, упростив его всеми возможными способами. Представленные формулы доказываются просто: достаточно раскрыть скобки и привести подобные слагаемые.

Уравнения

После изучения вопроса, что такое равенство, можно приступать к следующему пункту: Под уравнением понимается равенство, в котором присутствуют неизвестные величины. Решением уравнения называют нахождение всех значений переменной, при которых обе части всего выражения будут равны. Также встречаются задания, в которых нахождение решений уравнения невозможно. В таком случае говорят, что корней нет.

Как правило, равенства с неизвестными в качестве решения выдают целые числа. Однако возможны случаи, когда корнем являются вектор, функция и другие объекты.

Уравнение является одним из важнейших понятий в математике. Большинство научных и практических задач не позволяют измерить или вычислить какую-либо величину. Поэтому необходимо составлять соотношение, которое удовлетворит все условия поставленной задачи. В процессе составления такого соотношения появляется уравнение или система уравнений.

Обычно решение равенства с неизвестным сводится к преобразованию сложного уравнения и сведению его к простым формам. Необходимо помнить, что преобразования нужно проводить относительно обеих частей, в противном случае на выходе получится неверный результат.

4 способа решить уравнение

Под решением уравнения понимают замену заданного равенства другим, которое равносильно первому. Подобная подмена известна как тождественное преобразование. Чтобы решить уравнение, необходимо воспользоваться одним из способов.

1. Одно выражение заменяется другим, которое в обязательном порядке будет тождественно первому. Пример: (3∙х+3) 2 =15∙х+10. Это выражение можно преобразовать в 9∙х 2 +18∙х+9=15∙х+10.

2. Перенесение членов равенства с неизвестным из одной стороны в другую. В таком случае необходимо правильно менять знаки. Малейшая ошибка сгубит всю проделанную работу. В качестве примера возьмем предыдущий «образец».

9∙х 2 + 12∙х + 4 = 15∙х + 10

9∙х 2 + 12∙х + 4 - 15∙х - 10 = 0

3. Перемножение обеих частей равенства на равное число или выражение, которые не равняются 0. Однако стоит напомнить, что если новое уравнение не будет равносильным равенству до преобразований, тогда количество корней может существенно измениться.

4. Возведение в квадрат обеих частей уравнения. Этот способ просто замечательный, особенно когда в равенстве есть иррациональные выражения, то есть и выражение под ним. Тут есть один нюанс: если возвести уравнение в четную степень, тогда могут появиться посторонние корни, которые исказят суть задания. И если неправильно извлечь корень, тогда смысл вопроса в задаче будет неясен. Пример: │7∙х│=35 → 1) 7∙х = 35 и 2) - 7∙х = 35 → уравнение будет решено верно.

Итак, в этой статье упоминаются такие термины, как то уравнения и тождества. Все они происходят от понятия «равенство». Благодаря различного рода равносильным выражениям решение некоторых задач в значительной мере облегчено.