Конспект урока химии на тему "основные положения теории электролитической диссоциации". Теория электрической диссоциации Основные понятия теории электролитической диссоциации

>> Химия: Основные положения теории электролитической диссоциации Обобщим сведения об электролитической диссоциации в виде основных положений ныне общепризнанной теории. Они заключается в следующем.
В результате такого взаимодействия образуются гидратиро-ванные, то есть связанные с молекулами воды, ионы.

Следовательно, по наличию водной оболочки ионы делятся на гидратированные (в растворах и кристаллогидратах) и не-гидратированные (в безводных солях).

Свойства гидратиронянных и негндратировашшх ионов отличаются, как вы смогли уже убедиться на примере ионов меди.

При растворении в воде электролиты диссоциируют (расспадаются) на положительные и отрицательные ионы.

Свойства ионов совершенно не похожи на свойства атомов , которые их образовали. Ионы - зто одна из форм существования химического элемента. Например, атомы металла натрия энергично взаимодействуют с водой, образуя при этом щелочь и водород Н, в то время как ионы натрия таких продуктов не образуют. Хлор имеет желто-зеленый цвет и резкий запих, ядовит, а ионы хлора - бесцветны, неядовиты, лишены запаха. Никому не придет в голову использовать в пищу металлический натрий и газообразный хлор, в то время как без хлорида натрия, состоящего из ионов натрия и хлора, невозможно приготовление пищи.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Теория электролитической диссоциации Аррениуса. Закон разбавления Оствальда. Степень диссоциации, константа диссоциации. Недостатки теории Аррениуса.

ТеорияэлектролитическойдиссоциацииАррениуса

Для электролитов коллигативные свойства растворов (понижение температуры замерзания, повышение температуры кипения, понижение давления пара растворителя над раствором и осмотическое давление) значительно больше соответствующих величин для неэлектролитов. В уравнение для осмотического давления p Вант-Гофф ввел эмпирический коэффициентi > 1, физический смысл которого стал понятен с появлением теории электролитической диссоциации:

p = i cRT .

Теория электролитической диссоциации была предложена Аррениусом (1884-1887), развившим отдельные высказывания ряда ученых.

Основные положения теории Аррениуса :

1. Соли, кислоты, основания при растворении в воде и некоторых других полярных растворителях частично или полностью распадаются (диссоциируют) на ионы . Эти ионы существуют в растворе независимо от того, проходит через раствор электрический ток или нет. Вследствие этого число независимо движущихся частиц растворенного вещества больше, чем при отсутствии диссоциации, а величины коллигативных свойств растворов возрастают прямо пропорционально числу частиц. Ионы представляют собой заряженные частицы, которые состоят или из отдельных атомов, или из группы атомов. Предполагается, что ионы в растворе ведут себя подобно молекулам идеального газа, то есть не взаимодействуют друг с другом.

2. Наряду с процессом диссоциации в растворе идет обратный процесс - ассоциация ионов в молекулы. Таким образом, диссоциация молекул на ионы является неполной , поэтому в качестве меры электролитической диссоциации Аррениус ввел величину степени диссоциации a , определяемую как долю молекул, распавшихся на ионы:

a == .

Для любой обратимой реакции электролитической диссоциации

К n + А n - Û n + К z + + n A z

сумма n + + n – равна общему числу n ионов, образующихся при диссоциации одной молекулы; связь с коэффициентом Вант-Гоффаi дается уравнением

i =1+( n + + n - 1) × a =1+(n - 1) × a .

Определив коэффициент i , можно по этому уравнению вычислить степень диссоциации a , если известна величина n .

Коэффициент i показывает, во сколько раз увеличивается общая молярная конценрация частиц в растворе за счет диссоциации электролита. По мере увеличения разведения коэффициент Вант-Гоффа приближается к простому целому числу(2, 3, 4 - в зависимости от числа ионов, образующихся из одной молекулы вещества).

3. Диссоциация растворенных веществ на ионы подчиняется тем же законам химического равновесия, что и другие реакции , в частности, закону действующих масс

К д,с =,

гдеК д,с - константадиссоциации , выраженная через концентрации, или так называемая классическая константа диссоциации .

Диссоциация сильных электролитов равна 100% или почти 100%, так что концентрации ионов можно считать равными молярности растворенного вещества, умноженной на n + (n – ):

с + =с × n + ,с – =с × n – .

При диссоциации слабого электролита устанавливается равновесие между недиссоциированными молекулами и ионами. Рассмотрим простейший пример , когда молекула распадается только на два иона:

СН 3 СООН Û СН 3 СОО – +Н +

с - a с a с a с(равновесные концентрации)

К д,с ==

К д,с = =

Последнее равенство является простейшей формойзаконаразведенияОствальда (1888), поскольку величина V = 1/с , л/моль, называется разведением.

Чем большеК д,с, тем выше степень диссоциации. Таким образом, величинаК д,с может служить мерой силы кислоты, то есть мерой кислотности. Для электролитов средней силы (Н 3 РО 4 - первая ступень, Са(ОН) 2 , СНСl 2 СООН) значения К д,с лежат в пределах от 10 –2 до 10 –4 ; для слабых электролитов (СН 3 СООН, N Н 4 ОН)К д,с = 10 –5 - 10 –9 ; приК д,с < 10 –10 электролит считается очень слабым (Н 2 О, С 6 Н 5 ОН, С 6 Н 5 N Н 2 , НСN ).

Зная константу диссоциации, можно рассчитать степень диссоциации в зависимости от концентрации электролита. Решая квадратное уравнение и учитывая, что a > 0, получим

.

Как следует из данного уравнения, при условииК д,с >> 4с , a ® 1, то есть электролит становится полностью диссоциированным. С другой стороны, при малых К д,с (обычно < 10 –5) и при не очень низких конценрациях, когдаК д,с << 4с , величиной a можно пренебречь по сравнению с 1 в знаменателе закона разведения Оствальда, и формулы примут вид

К д,с = a 2 с; a = .

Вышеприведенные соотношения применимы только для растворов симметричных бинарных электролитов (то есть если одна молекула электролита дает один катион и один анион). Если электролит распадается больше чем на два иона, то зависимостьК д,с от a усложняется:

Са Cl 2 Û Ca 2+ +2Cl

с (1- a ) a с2 a с

К д,с = ==

Рис. 22. Зависимость степени диссоциации слабого электролита a от его концентрации с

Рис. 23. Зависимость константы диссоциации и степени диссоциации слабого электролита от температуры

Степень диссоциации a , а следовательно и К д,с, зависят также от температуры , зависимость проходит через максимум (см. рис. 23). Это можно объяснить влиянием двух противоположно направленных воздействий. С одной стороны, всякая диссоциация протекает с поглощением тепла, и, следовательно, при повышении температуры равновесие должно смещаться в сторону большей диссоциации. С другой стороны, при повышении температуры диэлектрическая проницаемость воды, служащей растворителем, уменьшается, а это способствует воссоединению ионов. К д,с максимальна при той Т, при которой влияние второго фактора начинает преобладать. Обычно изменениеК д,с с повышением Т невелико.

Зависимость К д,с от температуры описывается уравнением изобары Вант-Гоффа: G о =RT ln К д,с.

Электролиты – вещества, водные растворы и расплавы которых проводят электрический ток. Эти вещества имеют ионную и ковалентную сильнополярную связи. Электролитами являются кислоты, основания, соли. Поведение электролитов в растворе объясняет теория электролитической диссоциации, сформулированная Сванте Аррениусом в 1887 году:

Вещества, растворы которых являются электролитами, при растворении распадаются на частицы (ионы), несущие положительные и отрицательные заряды.

Процесс распада электролита на ионы называется электролитической диссоциацией. Под действием электрического напряжения положительно заряженные ионы двигаются к катоду, а отрицательно заряженные – к аноду.

Ионы, заряженные положительно, называются катионами , а отрица-тельно заряженные ионы – анионами . Катионами являются положительно заряженные ионы металлов, ион водорода, NH 4 + , анионы –кислотные остатки и гидроксид-ион. Величина заряда иона совпадает с валентностью атома или кислотного остатка, а количество положительных зарядов равно количеству отрицательных. Поэтому раствор в целом электронейтрален. Процесс электролитической диссоциации изображается следующим образом:

NaCl ↔ Na + + Cl‾

H 2 SO 4 ↔ 2H + + SO 4 2–

Теория Аррениуса объяснила многие явления, связанные со свойствами растворов электролитов, но не ответила на вопрос: почему одни вещества являются электролитами, а другие – нет, а также какую роль в образовании ионов играет растворитель.

2 . Механизм диссоциации

Теорию процесса диссоциации разработал И.А. Каблуков (1891).

Представим себе, что ионный кристалл, например NaCl, внесен в воду. Каждый ион, находящийся на поверхности кристалла, образует вокруг себя электрическое поле. Вблизи от Na + создается поле положительного знака, вблизи Cl – дается электростатическое поле отрицательного знака. Влияние этих полей распространяется на некоторое расстояние от кристалла. В растворе кристалл со всех сторон окружают беспорядочно движущиеся молекулы воды. Попадая в поле действия электрических заряженных ионов, они изменяют свое движение: в непосредственной близости от кристалла они ориентируются таким образом, что к отрицательно заряженному иону Cl – диполи воды оказываются направленными положительно заряженным полюсом, а к положительно заряженному иону Na + – отрицательно заряженным полюсом (рис. 1). Такое явление называется ориентацией полярных молекул в электростатическом поле. Между ионами и диполями воды действуют кулоновские силы притяжения. В результате ион-дипольного взаимодействия выделяется энергия, которая способствует разрыву ионных связей в кристалле и переведению иона из кристалла в раствор. Отделенные друг от друга ионы тотчас же после разрыва связи между ними вплотную окружаются полярными молекулами воды и становятся полностью гидратированными . Явление взаимодействия ионов с молекулами воды, в результате чего происходит образование гидратной оболочки, называется гидратацией ионов .

Рис. 1. Диссоциация ионных соединений

Гидратированные ионы, имеющие противоположные заряды, могут взаимодействовать друг с другом. Но так как ионы движутся в растворе вместе с гидратными оболочками, то сила их взаимодействия значительно уменьшена, и они способны к самостоятельному существованию.

При растворении полярных соединений происходит ориентация диполей воды вокруг растворенных молекул, вызывая еще большую поляризацию их. Полярная ковалентная связь между атомами переходит в ионную. Общая электронная пара сдвигается к одному из атомов (рис. 2).

Рис. 2. Диссоциация молекул с полярной ковалентной связью

Например, в HCl электронная пара сдвигается к атому хлора, который превращается в гидратированный ион хлора, и протон с молекулой воды образует сложную положительно заряженную частицу H 3 O + – ион гидроксония.

HCl + xH 2 O ↔ H 3 O + + Cl – ∙yH 2 O

Таким образом, электролитами могут быть соединения только с ионной или полярной ковалентной связью. Электролиты могут диссоциировать только в полярных растворителях.

Шведский ученый Сванте Аррениус изучая электропроводность растворов различных веществ, пришел к выводу, что причиной электропроводности является наличие в растворе ионов, которые образуются при растворении электролита в воде. Этот процесс получил название электролитическая диссоциация. В 1887 году Аррениус сформулировал основные положения теории электролитической диссоциации.

Рассмотрим основные положения теории электролитической диссоциации.

При растворении в воде электролиты диссоциируют (распадаются) на положительные и отрицательные ионы.

Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома – это простые ионы (Na + , Mg 2+ , Аl 3+ и т.д.) – или из нескольких атомов – это сложные ионы (NО 3 - , SO 2- 4 , РО З- 4 и т.д.).

Причиной диссоциации электролита в водном растворе является его гидратация, т.е. взаимодействие электролита с молекулами воды и разрыв химической связи в нем.

В результате взаимодействия электролита с молекулами воды образуются гидратированные, т.е. связанные с молекулами воды, ионы.

Под действием электрического тока положительно заряженные ионы движутся к отрицательному полюсу источника тока – катоду, поэтому их называют катионами, а отрицательно заряженные ионы движутся к положительному полюсу источника тока – аноду, поэтому их называют анионами.

Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами.

4. Электролитическая диссоциация – процесс обратимый для слабых электролитов. Наряду с процессом диссоциации (распад электролита на ионы) протекает и обратный процесс – ассоциация (соединение ионов). Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости, например:

HNO 2 ↔ H + + NO 2-

Механизм электролитической диссоциации.

Электролитическая ионизация обусловлена взаимодействием полярных молекул растворителя с частицами растворенного вещества. Упрощенно, без учета H-связей в воде, этапы электролитической диссоциации представлены на рис. 3.1.



Рисунок 3.1

Этапы электролитической ионизации полярных молекул (а)

и ионных кристаллов (б)

1 - сольватация; 2 - ионизация; 3 - диссоциация.

Подготовительным этапом электролитической диссоциации является сольватация вещества (этап 1). Далее полярные молекулы (например, HCl) поляризуются в силовом поле окружающих их диполей растворителя, и вследствие сильного смещения связывающих электронов связь становится ионной. Происходит ионизация молекулы (этап 2), а затем гетеролитическая диссоциация связи с образованием гидратированных ионов:

HCl (г) + nH 2 O H + (H 2 O) x + Cl - (H 2 O) n-x .

Сольватация вещества наблюдается и при растворении преимущественно ионных кристаллов (например, NaCl) в воде. Взаимодействие с полярными молекулами растворителя способствует ослаблению связей в кристалле и обеспечивает возможность перехода ионов Na и Cl в раствор с образованием гидратированных ионов:

NaCl + nH 2 O Na + (H 2 O) x + Cl - (H 2 O) n-x .

Количество молекул в сольватной оболочке меняется в зависимости от природы иона, температуры и концентрации раствора. Поэтому формулой невозможно точно передать состав сольвата, т.к. он может быть, например, Na + (H 2 O) 6 , Na + (H 2 O) 23 и др.

Основные понятия электролитической диссоциации.

По способности вещества распадаться или не распадаться в расплаве или растворе на ионы различают, соответственно, электролиты и неэлектролиты .

Электролиты - это вещества, растворы и расплавы которых проводят электрический ток . К электролитам принадлежат большинство солей и гидроксиды.

Неэлектролиты - это сложные вещества, которые не распадаются на ионы и вследствие чего их растворы и расплавы не проводят электрический ток . К неэлектролитам относят большую часть органических соединений, например, бензол, глюкозу, крахмал (важнейшие исключения: органические кислоты и оранические основания).

К сильным электролитам условно относят вещества, кажущаяся степень диссоциации которых в растворе превышает 30% (ά > 0,3). При ά < 3% (ά < 0,03) электролиты считают слабыми, в других случаях о них говорят как об электролитах средней силы.

Силу электролитов количественно характеризуют степенью диссоциации. Степень диссоциации ( ά) - это отношение числа распавшихся на ионы молекул (N дис.) к общему числу молекул растворенного вещества (N общ.) :

Степень диссоциации выражают в долях единицы или в процентах. Поскольку общее число молекул вещества в растворе пропорционально количеству его вещества и его молярной концентрации, то можно записать:

,

где n дис. и c дис. - соответственно, количество и молярная концентрация растворенного вещества, подвергшегося электролитической диссоциации;

n общ. и c общ. - количество и молярная концентрация вещества в растворе в момент его приготовления.

Электролиты, у которых ά = 1, относят к сильным, у слабых электролитов ά < 1 .

Степень диссоциации обычно определяют по данным измерения электропроводности растворов, которая прямо пропорциональна концентрации свободно движущихся ионов. При этом получают не истинные ά , а кажущиеся значения. Они всегда меньше истинных значений ά , т.к. ионы при движении к электродам сталкиваются и частично уменьшают свою подвижность, особенно при высокой их концентрации в растворе, когда возникает электростатическое притяжение между ионами. Например, истинное значение степени электролитической диссоциации HCl в разбавленном растворе равно 1, в 1 М растворе ά = 0,78 (78%) при 18 0 С, однако, в этом растворе не содержится 22% недиссоциированных молекул HCl, практически все молекулы диссоциированы.

Электролиты, которые в разбавленном водном растворе диссоциируют практически полностью, называют сильными электролитами .

К сильным электролитам в водных растворах принадлежат почти все соли, многие неорганические кислоты (H 2 SO 4 , HNO 3 , HClO 4 , галогеноводородные, кроме HF и др.), гидроксиды s-элементов (исключение - Be(OH) 2 и Mg(OH) 2). Кажущиеся значения a этих электролитов находятся в пределах от 70 до 100%.

Диссоциация сильных электролитов - это практически необратимый процесс :

HCl → H + + Cl - или HCl = H + + Cl -

Электролиты, которые в разбавленном водном растворе диссоциируют частично, называют слабыми. Диссоциация слабых электролитов - обратимый процесс , например:

Степень электролитической диссоциации зависит от:

  • природы электролита и растворителя;
  • концентрации раствора;
  • температуры

и возрастает при увеличении разбавления раствора . Степень диссоциации возрастает при увеличении температуры раствора. Если в растворе слабой кислоты или слабого основания увеличить концентрацию одноименного иона введением соответствующей соли, то наблюдается резкое изменение степени диссоциации слабого электролита. Рассмотрим, например, как изменится ά уксусной кислоты (CH 3 COOH) при введении в раствор ацетата натрия (введение одноименных ионов CH 3 COO -).

Согласно принципу Ле Шателье равновесие процесса диссоциации

сместится влево в результате увеличения концентрации ацетат-ионов CH 3 COO - , образующихся при диссоциации ацетата натрия:

CH 3 COONa → CH 3 COO - + Na + .

Такое смещение равновесия в сторону молизации CH 3 COOH означает уменьшение степени ее диссоциации и приводит к уменьшению концентрации ионов водорода.

Вещества-электролиты при растворении в воде распадаются на заряженные частицы — ионы. Обратное явление — моляризация, или ассоциация. Образование ионов объясняет теория электролитической диссоциации (Аррениус, 1887). На механизм распада химических соединений при расплавлении и растворении влияют особенности типов химических связей, строение и характер растворителя.

Электролиты и непроводники

В растворах и расплавах происходит разрушение кристаллических решеток и молекул — электролитическая диссоциация (ЭД). Распад веществ сопровождается образованием ионов, появлением такого свойства, как электропроводность. Не каждое соединение способно диссоциировать, а только вещества, которые изначально состоят из ионов либо сильно полярных частиц. Присутствием свободных ионов объясняется свойство электролитов проводить ток. Обладают такой способностью основания, соли, многие неорганические и некоторые органические кислоты. Непроводники состоят из малополярных или неполяризованных молекул. Они не распадаются на ионы, являясь неэлектролитами (многие органические соединения). Переносчики зарядов — положительные и отрицательные ионы (катионы и анионы).

Роль С. Аррениуса и других химиков в изучении диссоциации

Теория электролитической диссоциации обоснована в 1887 году ученым из Швеции С. Аррениусом. Но первые обширные исследования свойств растворов были проведены еще русским ученым М. Ломоносовым. Внесли вклад в изучение заряженных частиц, возникающих при растворении веществ, Т. Гротгус и М. Фарадей, Р. Ленц. Аррениус доказал, что электролитами являются многие неорганические и некоторые органические соединения. Шведский ученый объяснил электропроводность растворов распадом вещества на ионы. Теория электролитической диссоциации Аррениуса не придавала значения непосредственному участию молекул воды в этом процессе. Русские ученые Менделеев, Каблуков, Коновалов и другие считали, что происходит сольватация — взаимодействие растворителя и растворенного вещества. Когда идет речь о водных системах, то применяется название «гидратация». Это сложный физико-химический процесс, о чем свидетельствует образование гидратов, тепловые явления, изменение цвета вещества и появление осадка.

Основные положения теории электролитической диссоциации (ТЭД)

Многие ученые работали над уточнением теории С. Аррениуса. Потребовалось ее усовершенствование с учетом современных данных о строении атома, химической связи. Сформулированы основные положения ТЭД, отличающиеся от классических тезисов конца XIX века:

Происходящие явления необходимо учитывать при составлении уравнений: применить специальный знак обратимого процесса, подсчитать отрицательные и положительные заряды: они в сумме должны совпадать.

Механизм ЭД ионных веществ

Современная теория электролитической диссоциации учитывает строение веществ-электролитов и растворителей. При растворении связи между разноименно заряженными частицами в ионных кристаллах разрушаются под воздействием полярных молекул воды. Они буквально «вытягивают» ионы из общей массы в раствор. Распад сопровождается образованием вокруг ионов сольватной (в воде — гидратной) оболочки. Кроме воды, повышенной диэлектрической проницаемостью обладают кетоны, низшие спирты. При диссоциации хлорида натрия на ионы Na + и Cl - регистрируется начальная стадия, которая сопровождается ориентацией диполей воды относительно поверхностных ионов в кристалле. На заключительном этапе гидратированные ионы освобождаются и диффундируют в жидкость.

Механизм ЭД соединений с ковалентной сильнополярной связью

Молекулы растворителя влияют на элементы кристаллического строения неионных веществ. Например, воздействие диполей воды на хлороводородную кислоту приводит к изменению типа связи в молекуле с ковалентной полярной на ионную. Вещество диссоциирует, в раствор поступают гидратированные ионы водорода и хлора. Этот пример доказывает важность тех процессов, которые возникают между частицами растворителя и растворенного соединения. Именно это взаимодействие приводит к образованию ионов электролита.

Теория электролитической диссоциации и основные классы неорганических соединений

В свете основных положений ТЭД кислотой можно назвать электролит, при распаде которого из положительных ионов можно обнаружить только протон Н + . Диссоциация основания сопровождается образованием или освобождением из кристаллической решетки только аниона ОН - и катиона металла. Нормальная соль при растворении дает положительный ион металла и отрицательный — остатка кислоты. Основная соль отличается наличием двух видов анионов: ОН-группы и кислотного остатка. В кислой соли из катионов присутствуют только водород и металл.

Сила электролитов

Для характеристики состояния вещества в растворе используется физическая величина — степень диссоциации (α). Находят ее значение из отношения количества распавшихся молекул к общему их числу в растворе. Глубину диссоциации определяют разные условия. Важны диэлектрические показатели растворителя, структура растворенного соединения. Обычно степень диссоциации понижается с ростом концентрации и увеличивается при повышении температуры. Зачастую степень диссоциации конкретного вещества выражают в долях от единицы.

Классификация электролитов

Теория электролитической диссоциации в конце XIX века не содержала положения о взаимодействии ионов в растворе. Несущественным казалось Аррениусу влияние молекул воды на распределение катионов и анионов. Представления Аррениуса о сильных и слабых электролитах были формальными. Исходя из классических положений, можно получить значение α = 0,75-0,95 для сильных электролитов. В экспериментах доказана необратимость их диссоциации (α →1). Практически полностью распадаются на ионы растворимые соли, серная и соляная кислоты, щелочи. Частично диссоциируют сернистая, азотистая, плавиковая, ортофосфорная кислоты. Слабыми электролитами считаются кремниевая, уксусная, сероводородная и угольная кислоты, гидроксид аммония, нерастворимые основания. Воду также относят к слабым электролитам. Диссоциирует небольшая часть молекул Н 2 О, одновременно происходит моляризация ионов.