В каких реакциях цикла кребса участвует коа. Цикл трикарбоновых кислот

Цикл Кребса называют еще циклом лимонной кислоты, или клеточным дыханием. Цикл превращения лимонной кислоты в живых клетках был открыт и изучен немецким биохимиком Гансом Кребсом, за эту свою работу он (совместно с Ф. Липманом) был удостоен Нобелевской премии (1953). В расшифровке отдельных реакций этого процесса приняли участие многие ученые: А. Сент-Дьердьи, А. Ленинджер, С. Е. Северин и другие.

Цикл Кребса конечный путь окисления ацетильных групп, в которые превращается в процессе катаболизма большая часть органических молекул, играющих роль "клеточного топлива" - углеводов, жирных кислот и аминокислот.

За один оборот цикла, состоящего из восьми ферментативных реакций, происходит полное окисление одной молекулы. На уровне цикла Кребса объединяются пути распада углеводов, липидов и белков. Метаболиты цикла Кребса используются для синтеза других веществ (щавелевоуксусная кислота → глюкоза, аспарагиновая кислота). Данный цикл происходит в матриксе митохондрий.

Цикл Кребса – главная система, поставляющая водород для дыхательной цепи митохондрий.

Все пути катаболизма сводятся к образованию трехуглеродного соединения –пировиноградной кислоты, которая затем путем окислительного декарбоксилирования в присутствии кофермента –тиаминпирофосфата подвергается декарбоксилированию с образованием ацетил-КоА. АцетилкоферментА «сгорает» в цикле Кребса до двух молекул СО 2 .

1. Первой реакцией цикла Кребса является образование цитрата - лимонной кислоты

2.Во второй реакции через стадию дегидратации и образования цис-аконитовой кислоты происходит образование изолимонной кислоты.

Обратите внимание, что присоединение молекулы воды к цис-аконитовой кислоте идет против правила Марковникова.

3. В третьей реакции, которая, по-видимому, лимитирует скорость цикла Кребса, изолимонная кислота дегидрируется в присутствии НАД-зависимой изоцитратдегидрогеназы:

4. В четвертой реакции происходит окислительное декарбоксилирование α-кетоглутаровой кислоты до сукцинил-КоА. Механизм этой реакции сходен с реакцией окислительного декарбоксилирования пирувата до ацетил-КоА.



5. Пятая реакция катализируется ферментом сукцинил-КоА-синтетазой. В ходе этой реакции сукцинил-КоА при участии ГДФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи ГТФ1 за счет высокоэргической тиоэфирной связи сукцинил-КоА:

6. В шестой реакции сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой, в молекуле которой с белком ковалентно связан кофермент ФАД + :

7. В седьмой реакции образовавшаяся фумаровая кислота гидратируется под влиянием фермента фумаратгидратазы. Продуктом данной реакции является яблочная кислота (малат). Следует отметить, что фумаратгидратаза обладает стереоспецифичностью, - в ходе данной реакции образуется L-яблочная кислота (малат):

8. В восьмой реакции цикла трикарбоновых кислот под влиянием митохондриальной НАД-зависимой малатдегидрогеназы происходит окисление L-малата в оксалоацетат:

Освобождающаяся в результате окисления ацетил-КоА энергия в значительной мере сосредоточивается в макроэргических фосфатных связях АТФ. Из четырех пар атомов водорода три пары переносятся через НАД + на систему транспорта электронов; при этом в расчете на каждую пару в системе биологического окисления образуются три молекулы АТФ (в процессе сопряженного окислительного фосфорилирования), а всего, следовательно, девять молекул АТФ. Одна пара атомов попадает в систему транспорта электронов через ФАД, - в результате образуются 2 молекулы АТФ. В ходе реакций цикла Кребса синтезируется также 1 молекула ГТФ, что равносильно 1 молекуле АТФ. Итак, при окислении ацетил-КоА в цикле Кребса образуется 12 молекул АТФ.

Схематичное изображение цикла Кребса:

В ЦТК два ключевых фермента:

1) цитратсинтаза (1-я реакция)

2) изоцитратдегидрогеназа (3-я реакция)

Оба фермента аллостерически ингибируются избытком АТФ и НАДН 2 . Изоцитратдегидрогеназа сильно активируется АДФ. Если АДФ нет, то этот фермент неактивен. В условиях энергетического покоя концентрация АТФ увеличивается, и скорость реакций ЦТК мала - синтез АТФ уменьшается. Изоцитратдегидрогеназа ингибируется АТФ намного сильнее, чем цитратсинтаза, поэтому в условиях энергетического покоя повышается концентрация цитрата, и он выходит в цитоплазму по градиенту концентраций путем облегченной диффузии. В цитоплазме цитрат превращается в Ацетил-КоА, который участвует в синтезе жирных кислот. Промежуточные продукты метаболизма цикла Кребса идут на синтез других веществ. Из α-кетоглутарата и щавелевоуксусной кислоты (оксалоацетата) синтезируются аминокислоты, из щавелевоуксусной кислоты – углеводы, из сукцинил-КоА → синтез гема гемоглобина. Образовавшиеся восстановленные коферменты НАДН 2 и ФАДН 2 в дыхательной цепи окисляются с образованием воды, АТФ и побочного продукта – перекиси водорода.

Цикл трикарбоновых кислот впервые был открыт английским биохимиком Кребсом. Он первым постулировал значение данного цикла для полного сгорания пирувата, главным источником которого является гликолитическое превращение углеводов. В дальнейшем было показано, что цикл трикарбоновых кислот является "фокусом", в котором сходятся практически все метаболические пути.

Итак, образовавшийся в результате окислительного декарбоксилирования пирувата ацетил-КоА вступает в цикл Кребса. Данный цикл состоит из восьми последовательных реакций (рис. 91). Начинается цикл с конденсации ацетил-КоА с оксалоацетатом и образования лимонной кислоты. (Как будет видно ниже, в цикле окислению подвергается собственно не ацетил-КоА, а более сложное соединение - лимонная кислота (трикарбоновая кислота). )

Затем лимонная кислота (шестиуглеродное соединение) путем ряда дегидрирований (отнятие водорода) и дскарбоксилирований (отщепление СО 2) теряет два углеродных атома и снова в цикле Кребса появляется оксалоацетат (четырехуглеродное соединение), т. е. в результате полного оборота цикла молекула ацетил-КоА сгорает до СО 2 и Н 2 О, а молекула оксалоацетата регенерируется. Ниже приводятся все восемь последовательных реакций (этапов) цикла Кребса.

В первой реакции, катализируемой ферментом цитратсинтазой, ацетил-КоА конденсируется с оксалоацетатом. В результате образуется лимонная кислота:

По-видимому, в данной реакции в качестве промежуточного продукта образуется связанный с ферментом цитрил-КоА. Затем последний самопроизвольно и необратимо гидролизуется с образованием цитрата и HS-KoA.

Во второй реакции цикла образовавшаяся лимонная кислота подвергается дегидратированию с образованием цис-аконитовой кислоты, которая, присоединяя молекулу воды, переходит в изолимонную кислоту. Катализирует эти обратимые реакции гидратации-дегидратации фермент аконитат-гидратаза:

В третьей реакции, которая, по-видимому, лимитирует скорость цикла Кребса, изолимонная кислота дегидрируется в присутствии НАД-зависимой изоцитратдегидрогеназы:


(В тканях существует два типа изоцитратдегидрогеназ: НАД- и НАДФ-зависимые. Установлено, что роль основного катализатора окисления изолимонной кислоты в цикле Кребса выполняет НАД-зависимая изоцитратдегидрогеназа. )

В ходе изоцитратдегидрогеназной реакции изолимонная кислота декарбоксилируется. НАД-зависимая изоцитратдегидрогеназа является аллостерическим ферментом, которому в качестве специфического активатора необходим АДФ. Кроме того, фермент для проявления своей активности нуждается в ионах Mg 2+ или Мn 2+ .

В четвертой реакции происходит окислительное декарбоксилирование α-кетоглутаровой кислоты до сукцинил-КоА. Механизм этой реакции сходен с реакцией окислительного декарбоксилирования пирувата до ацетил-КоА. α-Кетоглутаратдегидрогеназный комплекс напоминает по своей структуре пируватдегидрогеназный комплекс. Как в одном, так и в другом случае в ходе реакции принимают участие пять коферментов: TДФ, амид липоевой кислоты, HS-KoA, ФАД и НАД. Суммарно данную реакцию можно написать так:

Пятая реакция катализируется ферментом сукцинил-КоА-синтетазой. В ходе этой реакции сукцинил-КоА при участии ГДФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи ГТФ1 за счет высокоэргической тиоэфирной связи сукцинил-КоА:


(Образовавшийся ГТФ отдает затем свою концевую фосфатную группу на АДФ, вследствие чего образуется АТФ. Образование высокоэргического нуклеозидтрифосфата в ходе сукцинил-КоА-синтетазной реакции - пример фосфорилирования на уровне субстрата. )

В шестой реакции сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой, в молекуле которой с белком ковалентно связан кофермент ФАД:

В седьмой реакции образовавшаяся фумаровая кислота гидратируется под влиянием фермента фумаратгидратазы. Продуктом данной реакции является яблочная кислота (малат). Следует отметить, что фумаратгидратаза обладает стереоспецифичностью, - в ходе данной реакции образуется L-яблочная кислота:

Наконец, в восьмой реакции цикла трикарбоновых кислот под влиянием митохондриальной НАД-зависимой малатдегидрогеназы происходит окисление L-малата в оксалоацетат:

Как видно, за один оборот цикла, состоящего из восьми ферментативных реакций, происходит полное окисление ("сгорание") одной молекулы ацетил-КоА. Для непрерывной работы цикла необходимо постоянное поступление в систему ацетил-КоА, а коферменты (НАД и ФАД), перешедшие в восстановленное состояние, должны снова и снова окисляться. Это окисление осуществляется в системе переносчиков электронов (или в цепи дыхательных ферментов), локализованной в митохондриях.

Освобождающаяся в результате окисления ацетил-КоА энергия в значительной мере сосредоточивается в макроэргических фосфатных связях АТФ. Из четырех пар атомов водорода три пары переносятся через НАД на систему транспорта электронов; при этом в расчете на каждую пару в системе биологического окисления образуются три молекулы АТФ (в процессе сопряженного окислительного фосфорилирования), а всего, следовательно, девять молекул АТФ. Одна пара атомов попадает в систему транспорта электронов через ФАД, - в результате образуются 2 молекулы АТФ. В ходе реакций цикла Кребса синтезируется также 1 молекула ГТФ, что равносильно 1 молекуле АТФ. Итак, при окислении ацетил-КоА в цикле Кребса образуется 12 молекул АТФ.

Как уже отмечалось, 1 молекула НАДН 2 (3 молекулы АТФ) образуется при окислительном декарбоксилирова-нии пирувата в ацетил-КоА. Так как при расщеплении одной молекулы глюкозы образуются две молекулы пирувата, то при окислении их до 2 молекул ацетил-КоА и последующих двух оборотов цикла трикарбоновых кислот синтезируется 30 молекул АТФ (следовательно, окисление одной молекулы пирувата до СО 2 и Н 2 O дает 15 молекул АТФ).

К этому надо добавить 2 молекулы АТФ, образующиеся при аэробном гликолизе, и 4 молекулы АТФ, синтезирующихся за счет окисления 2 молекул внемитохондриального НАДН 2 , которые образуются при окислении 2 молекул глицеральдегид-3-фосфата в дегидрогеназной реакции. Итого получим, что при расщеплении в тканях 1 молекулы глюкозы по уравнению: C 6 H 12 0 6 + 60 2 -> 6СO 2 + 6Н 2 O синтезируется 36 молекул АТФ, что способствует накоплению в макроэргических фосфатных связях аденозинтрифосфата 36 X 34,5 ~ 1240 кДж (или, по другим данным, 36 Х 38 ~ 1430 кДж) свободной энергии. Другими словами, из всей освобождающейся при аэробном окислении глюкозы свободной энергии (окодо 2840 кДж) до 50% ее аккумулируется в митохондриях в форме, которая может быть использована для выполнения различных физиологических функций. Несомненно, что в энергетическом отношении полное расщепление глюкозы является более эффективным процессом, чем гликолиз. Необходимо отметить, что образовавшиеся в процессе превращения глицеральдегид-3-фосфата 2 молекулы НАДН 2 в дальнейшем при окислении дают не 6 молекул АТФ, а только 4. Дело в том, что сами молекулы внемитохондриального НАДН 2 не способны проникать через мембрану внутрь митохондрий. Однако отдаваемые ими электроны могут включаться в митохондриальную цепь биологического окисления с помощью так называемого глицерофосфатного челночного механизма (рис. 92). Как видно на рисунке, цитоплазматический НАДН 2 сначала реагирует с цитоплазматическим дигидроксиацетонфосфатом, образуя глицерол-3-фосфат. Реакция катализируется НАД-зависимой цитоплазматической глицерол-3-фосфат-дегидрогеназой.

Метаболизм

Метаболизм – это энергетический обмен, происходящий в нашем организме. Мы вдыхаем кислород и выдыхаем углекислый газ. Только живое существо может что-то брать из окружающей среды и обратно возвращать в другом виде.

Допустим, мы решили позавтракать и съели хлеб с курицей. Хлеб - это углеводы, курица – это белки.
В течении этого времени переваренные углеводы распадутся до моносахаридов, а белки до аминокислот.
Это начальная стадия – катаболизм. На этой ступени по своему строению сложные распадаются на более простые.

Также, в качестве примера можно привести обновление поверхности кожи. Они постоянно меняются. Когда верхний слой кожи отмирает, макрофаги убирают омертвевшие клетки и появляется новая ткань. Она создается путем сбора белка из органических соединений. Это протекает в рибосомах. Совокупность действий возникновения сложного состава (белка) из простого (аминокислот) называется анаболизмом.

Анаболизм:

  • рост,
  • увеличение,
  • расширение.

Катаболизм:

  • расщепления,
  • деление,
  • уменьшения.

Название можно запомнить, просмотрев фильм «Анаболики». Там идет речь о спортсменах, применяющих анаболические препараты для роста и увеличения мышечной массы.

Что такое Цикл Кребса?

В 30 годы 20 века ученый Ганс Кребс занимается изучение мочевины. Затем он переселяется в Англию и приходит к такому выводу, что некоторые ферменты катализируются в нашем теле. За это ему вручили Нобелевскую премию.

Мы получаем энергию благодаря глюкозе, содержащейся в эритроцитах. Действию перехода декстроза в энергию помогают митохондрии. Затем конечный продукт превращается в аденозинтрифосфат или АТФ. Именно АТФ является главной ценностью организма. Получаемое вещество насыщает энергией и органы нашего тела. Сама по себе глюкоза не может видоизмениться в АТФ, для этого нужны сложные механизмы. Этот переход и называется Циклом Кребса.

Цикл Кребса — это постоянные химические превращения, происходящие внутри каждого живого существа. Так оно называется, так как процедура повторяется без остановки. В итоге этого явления мы приобретаем аденозинтрифосфорную кислоту, которая считается жизненно важной для нас.

Важным условием является дыхание клетки. Во время прохождения всех стадий обязательно должен присутствовать кислород. На данном этапе также происходит создание новых аминокислот и углеводов. Эти элементы играют роль строителей организма, можно сказать это явление выполняет еще одну значительную роль — строительную. Для эффективности этих функций нужны и другие микро и макроэлементы и витамины. При недостатке хоть одного элемента, работа органов нарушается.

Этапы цикла Кребса

Здесь происходит деление одной молекулы глюкозы на две части пировиноградной кислоты. Она является важным звеном в процессе обмена веществ и от нее зависит работа печени. Она имеется во многих фруктах и ягодах. Ее часто используют в косметических целях. В результате еще может появиться молочная кислота. Она содержится в клетках крови, мозга, мышц. Затем мы получим кофермент А. Его функция — перенос углерода в разные части тела. При присоединении с оксалатом получаем цитрат. Кофермент А полностью распадается, также получаем молекулу воды.

На втором вода отделяется от цитрата. В итоге появляется акатиновое соединение, она поможет при получении изоцитрата. Так, например, мы можем узнать качество фруктов и соков, нектаров. Образуется NADH — оно необходимо при окислительных процессах и обмене веществ.
Происходит процесс соединения с водой, и высвобождается энергия аденозинтрифосфата. Получение оксалоцетата. Функционирует в митохондриях.

По каким причинам замедляется энергетический обмен?

Наше тело имеет особенность адаптироваться к еде, к жидкости и тому, сколько мы двигаемся. Эти вещи сильно влияют на метаболизм.
Еще в те далекие времена человечество выживало в тяжелых погодных условиях при болезнях, голоде, неурожае. Сейчас медицина двинулась вперед, поэтому в развитых странах люди стали дольше жить и лучше зарабатывать, не прикладывая всех своих сил. В наши дни люди чаще употребляют мучные, сладкие кондитерские изделия и мало двигаются. Такой образ жизни ведет к замедлению работы элементов.

Чтобы этого не было, в первую очередь необходимо включить в рацион цитрусовые. В них содержится комплекс витаминов и других важных веществ. Большую роль играет лимонная кислота, содержащаяся в ее составе. Она играет роль в химическом взаимодействии всех ферментов и названа в честь Цикла Кребса.

Прием цитрусовых поможет решить проблему энергетического взаимодействия, также если соблюдать здоровый образ жизни. Нельзя часто принимать в пищу апельсины, мандарины, так как они могут раздражать стенки желудка. Всего понемногу.

Образующийся в ПВК-дегидрогеназной реакции ацетил-SКоА далее вступает в цикл трикарбоновых кислот (ЦТК, цикл лимонной кислоты, цикл Кребса). Кроме пирувата, в цикл вовлекаются кетокислоты, поступающие из катаболизма аминокислот или каких-либо иных веществ.

Цикл трикарбоновых кислот

Цикл протекает в матриксе митохондрий и представляет собой окисление молекулы ацетил-SКоА в восьми последовательных реакциях.

В первой реакции связываются ацетил и оксалоацетат (щавелевоуксусная кислота) с образованием цитрата (лимонной кислоты), далее происходит изомеризация лимонной кислоты до изоцитрата и две реакции дегидрирования с сопутствующим выделением СО 2 и восстановлением НАД.

В пятой реакции образуется ГТФ, это реакция субстратного фосфорилирования . Далее последовательно происходит ФАД-зависимое дегидрирование сукцината (янтарной кислоты), гидратация фумаровой кислоты до малата (яблочная кислота), далее НАД-зависимое дегидрирование с образованием в итоге оксалоацетата .

В итоге после восьми реакций цикла вновь образуется оксалоацетат.

Последние три реакции составляют так называемый биохимический мотив (ФАД-зависимое дегидрирование, гидратация и НАД-зависимое дегидрирование, он используется для введения кетогруппы в структуру сукцината. Этот мотив также присутствует в реакциях β-окисления жирных кислот . В обратной последовательности (восстановление, де гидратация и восстановление) этот мотив наблюдается в реакциях синтеза жирных кислот .

Функции ЦТК

1. Энергетическая

  • генерация атомов водорода для работы дыхательной цепи , а именно трех молекул НАДН и одной молекулы ФАДН2 ,
  • синтез одной молекулы ГТФ (эквивалентна АТФ).

2. Анаболическая . В ЦТК образуются

  • предшественник гема – сукцинил-SКоА ,
  • кетокислоты, способные превращаться в аминокислоты – α-кетоглутарат для глутаминовой кислоты, оксалоацетат для аспарагиновой,
  • лимонная кислота , используемая для синтеза жирных кислот ,
  • оксалоацетат , используемый для синтеза глюкозы .

Анаболические реакции ЦТК

Регуляция цикла трикарбоновых кислот

Аллостерическая регуляция

Ферменты, катализирующие 1-ю, 3-ю и 4-ю реакции ЦТК, являются чувствительными к аллостерической регуляции метаболитами:

Регуляция доступностью оксалоацетата

Главным и основны регулятором ЦТК является оксалоацетат , а точнее его доступность. Наличие оксалоацетата вовлекает в ЦТК ацетил-SКоА и запускает процесс.

Обычно в клетке имеется баланс между образованием ацетил-SКоА (из глюкозы, жирных кислот или аминокислот) и количеством оксалоацетата. Источником оксалоацетата является пируват , (образуемый из глюкозы или аланина), получение из аспарагиновой кислоты в результате трансаминирования или цикла АМФ-ИМФ, и также поступление из фруктовых кислот самого цикла (янтарной, α-кетоглутаровой, яблочной, лимонной), которые могут образоваться при катаболизме аминокислот или поступать из других процессов.

Синтез оксалоацетата из пирувата

Регуляция активности фермента пируваткарбоксилазы осуществляется при участии ацетил-SКоА . Он является аллостерическим активатором фермента, и без него пируваткарбоксилаза практически неактивна. Когда ацетил-SКоА накапливается, то фермент начинает работать и образуется оксалоацетат, но, естественно, только при наличии пирувата.

Также большинство аминокислот при своем катаболизме способны превращаться в метаболиты ЦТК, которые далее идут в оксалоацетат, чем также поддерживается активность цикла.

Пополнение пула метаболитов ЦТК из аминокислот

Реакции пополнения цикла новыми метаболитами (оксалоацетат, цитрат, α-кетоглутарат и т.п) называются анаплеротическими .

Роль оксалоацетата в метаболизме

Примером существенной роли оксалоацетата служит активация синтеза кетоновых тел и кетоацидоз плазмы крови при недостаточном количестве оксалоацетата в печени . Такое состояние наблюдается при декомпенсации инсулинзависимого сахарного диабета (СД 1 типа) и при голодании. При указанных нарушениях в печени активирован процесс глюконеогенеза , т.е. образования глюкозы из оксалоацетата и других метаболитов, что влечет за собой снижение количества оксалоацетата. Одновременная активация окисления жирных кислот и накопление ацетил-SКоА запускает резервный путь утилизации ацетильной группы – синтез кетоновых тел . В организме при этом развивается закисление крови (кетоацидоз ) с характерной клинической картиной: слабость, головная боль, сонливость, снижение мышечного тонуса, температуры тела и артериального давления.

Изменение скорости реакций ЦТК и причины накопления кетоновых тел при некоторых состояниях

Описанный способ регуляции при участии оксалоацетата является иллюстрацией к красивой формулировке "Жиры сгорают в пламени углеводов ". В ней подразумевается, что "пламень сгорания" глюкозы приводит к появлению пирувата, а пируват превращается не только в ацетил-SКоА, но и в оксалоацетат. Наличие оксалоацетата гарантирует включение ацетильной группы, образуемой из жирных кислот в виде ацетил-SКоА, в первую реакцию ЦТК.

В случае масштабного "сгорания" жирных кислот, которое наблюдается в мышцах при физической работе и в печени при голодании , скорость поступления ацетил-SКоА в реакции ЦТК будет напрямую зависеть от количества оксалоацетата (или окисленной глюкозы).

Если количество оксалоацетата в гепатоците недостаточно (нет глюкозы или она не окисляется до пирувата), то ацетильная группа будет уходить на синтез кетоновых тел . Такое происходит при длительном голодании и сахарном диабете 1 типа .

Цикл трикарбоновых кислот был открыт в 1937 г. Г. Кребсом. В этой связи он получил название “цикл Кребса”. Данный процесс является цент-ральным путем метаболизма. Он происходит в клетках организмов, стоящих на разных ступенях эволюционного развития (микроорганизмы, растения, животные).

Исходным субстратом цикла трикарбоновых кислот является ацетил-коэнзим А. Этот метаболит представляет собой активную форму уксусной кислоты. Уксусная кислота выступает в качестве общего промежуточного продукта распада почти всех органических веществ, содержащихся в клетках живых организмов. Это связано с тем, что органические молекулы являются соединениями углерода, которые естественно могут распадаться до двухуглеродных фрагментов уксусной кислоты.

Свободная уксусная кислота обладает сравнительно слабой реакционной способностью. Ее превращения происходят в довольно жестких условиях, которые нереальны в живой клетке. Поэтому в клетках происходит активация уксусной кислоты путем ее соединения с коэнзимом А. В результате образуется метаболически активная форма уксусной кислоты – ацетил-коэнзим А.

Коэнзим А представляет собой низкомолекулярное соединение, которое состоит из фосфоаденозина, остатка пантотеновой кислоты (витамина В3) и тиоэтаноламина. Остаток уксусной кислоты присоединяется к сульфгидрильной группе тиоэтаноламина. При этом образуется тиоэфир – ацетил-коэнзим А, представляющий собой исходный субстрат цикла Кребса.

Ацетил-коэнзим А

Схема превращения промежуточных продуктов в цикле Кребса представлена на рис. 67. Процесс начинается с конденсации ацетил-коэнзима А с оксалоацетатом (щавелевоуксусной кислотой, ЩУК), в результате которой образуется лимонная кислота (цитрат). Реакция катализируется ферментом цитратсинтазой.

Рисунок 67 – Схема превращения промежуточных продуктов в цикле

трикарбоновых кислот

Далее под действием фермента аконитазы лимонная кислота превращается в изолимонную. Изолимонная кислота подвергается процессам окисления и декарбоксилирования. В этой реакции, катализируемой ферментом НАД-зависимой изоцитратдегидрогеназы, в качестве продуктов образуются углекислый газ, восстановленный НАД, а также a-кетоглутаровая кислота, которая затем вовлекается в процесс окислительного декарбоксилирования (рис. 68).

Рисунок 68 – Образование a-кетоглутаровой кислоты в цикле Кребса

Процесс окислительного декарбоксилирования a-кетоглутарата катализируется ферментами a-кетоглутаратдегидрогеназного мультиферментного комплекса. Этот комплекс состоит из трех различных ферментов Для его функционирования требуются коферменты. Коферменты a-кето-глутаратдегидрогеназного комплекса включают следующие водорастворимые витамины:

· витамин В 1 (тиамин) – тиаминпирофосфат;

· витамин В 2 (рибофлавин) – ФАД;

· витамин В 3 (пантотеновая кислота) – коэнзим А;

· витамин В 5 (никотинамид) – НАД;

· витаминоподобное вещество – липоевую кислоту.

Схематически процесс окислительного декарбоксилирования a-кето-глутаровой кислоты можно представить в виде следующего балансового уравнения реакции:


Продуктом этого процесса является тиоэфир остатка янтарной кис-лоты (сукцината) с коэнзимом А – сукцинил-коэнзим А. Тиоэфирная связь сукцинил-коэнзима А является макроэргической.

Следующая реакция цикла Кребса представляет собой процесс субстратного фосфорилирования. В ней происходит гидролиз тиоэфирной связи сукцинил-коэнзима А под действием фермента сукцинил-КоА-синтетазы с образованием янтарной кислоты (сукцината) и свободного коэнзима А. Этот процесс сопровождается освобождением энергии, которая тут же используется для фосфорилирования ГДФ, в результате которого образуется молекула макроэргического фосфата ГТФ. Субстратное фосфорилирование в цикле Кребса:

где Ф н – ортофосфорная кислота.

Образующийся в процессе окислительного фосфорилирования ГТФ может использоваться в качестве источника энергии в различных энергозависимых реакциях (в процессе биосинтеза белка, активации жирных кислот и др.). Помимо этого, ГТФ может использоваться для образования АТФ в нуклеозиддифосфаткиназной реакции

Продукт сукцинил-КоА-синтетазной реакции – сукцинат далее окисляется с участием фермента сукцинатдегидрогеназы. Этот энзим представляет собой флавиновую дегидрогеназу, в состав которой в качестве кофермента (простетической группы) входит молекула ФАД. В результате реакции янтарная кислота окисляется в фумаровую. Одновременно с этим происходит восстановление ФАД.

где Е – ФАД простетическая группа, связанная с полипептидной цепью фермента.

Образовавшаяся в сукцинатдегидрогеназной реакции фумаровая кислота, под действием фермента фумаразы (рис. 69), присоединяет молекулу воды и превращается в яблочную кислоту, которая затем окисляется в малатдегидрогеназной реакции в щавелево-уксусную кислоту (оксалоацетат). Последний может вновь использоваться в цитратсинтазной реакции для синтеза лимонной кислоты (рис. 67). За счет этого превращения в цикле Кребса имеют циклический характер.

Рисунок 69 – Метаболизм яблочной кислоты в цикле Кребса

Балансовое уравнение цикла Кребса может быть представлено в виде:

Из него видно, что в цикле происходит полное окисление ацетильного радикала остатка из ацетил-коэнзима А до двух молекул СО 2 . Этот процесс сопровождается образованием трех молекул восстановленного НАД, одной молекулы восстановленного ФАД и одной молекулы макроэргичес-кого фосфата – ГТФ.

Цикл Кребса происходит в матриксе митохондрий. Это связано с тем, что именно здесь находится большинство его ферментов. И только единственный фермент – сукцинатдегидрогеназа – встроен во внутреннюю митохондриальную мембрану. Отдельные энзимы цикла трикарбоновых кислот объединены в функциональный полиферментный комплекс (метаболон), связанный с внутренней поверхностью внутренней митохондриальной мембраны. За счет объединения ферментов в метаболон существенно повышается эффективность функционирования данного метаболического пути и появляются дополнительные возможности для его тонкой регуляции.

Особенности регуляции цикла трикарбоновых кислот во многом определяются его значением. Этот процесс выполняет следующие функции:

1) энергетическую. Цикл Кребса представляет собой наиболее мощный источник субстратов (восстановленных коферментов – НАД и ФАД) для тканевого дыхания. Помимо этого в нем происходит запасание энергии в форме макроэргического фосфата – ГТФ;

2) пластическую . Промежуточные продукты цикла Кребса являются предшественниками для синтеза различных классов органических веществ – аминокислот, моносахаридов, жирных кислот и т.д.

Таким образом, цикл Кребса выполняет двойственную функцию: с одной стороны, он является общим путем катаболизма, играющим центральную роль в энергетическом обеспечении клетки, а с другой, – обеспечивает биосинтетические процессы субстратами. Подобные обменные процессы получили название амфиболических. Цикл Кребса представляет собой типичный амфиболический цикл.

Регуляция обменных процессов в клетке тесно связана с существованием “ключевых” ферментов. Ключевыми являются те ферменты процесса, которые определяют его скорость. Как правило, одним из “ключевых” ферментов процесса является энзим, катализирующий его начальную реакцию.

Для “ключевых” ферментов характерны следующие особенности. Эти ферменты

· катализируют необратимые реакции;

· обладают наименьшей активностью по сравнению с другими энзимами, принимающими участие в процессе;

· представляют собой аллостерические ферменты.

Ключевыми ферментами цикла Кребса являются цитратсинтаза и изоцитратдегидрогеназа. Подобно ключевым ферментам других метаболических путей их активность регулируется по принципу отрицательной обратной связи: она снижается при повышении концентрации промежуточных продуктов цикла Кребса в митохондриях. Так, в качестве ингибиторов цитратсинтазы выступают лимонная кислота и сукцинил-коэнзим А, а в качестве изоцитратдегидрогеназы – восстановленный НАД.

АДФ является активатором изоцитратдегидрогеназы. В условиях повышения потребности клетки в АТФ как источника энергии, когда в ней увеличивается содержание продуктов распада (АДФ), возникают предпосылки для повышения скорости окислительно-восстановительных превращений в цикле Кребса и, следовательно, возрастания уровня ее энергетического обеспечения.