Схема горнера - примеры и алгоритмы решения многочлена. Урок на тему "Корни многочлена

1. Разделить 5x 4 + 5 x 3 + x 2 − 11 на x − 1 , используя схему Горнера.

Решение:

Составим таблицу из двух строк: в первой строке запишем коэффициенты многочлена 5x 4 +5x 3 +x 2 −11, расположенные по убыванию степеней переменной x . Заметьте, что данный многочлен не содержит x в первой степени, т.е. коэффициент перед x в первой степени равен 0. Так как мы делим на x −1, то во второй строке запишем единицу:

Начнем заполнять пустые ячейки во второй строке. Во вторую ячейку второй строки запишем число 5 , просто перенеся его из соответствующей ячейки первой строки:

Следующую ячейку заполним по такому принципу: 1⋅ 5 + 5 = 10 :

Аналогично заполним и четвертую ячейку второй строки: 1⋅ 10 + 1 = 11 :

Для пятой ячейки получим: 1⋅ 11 + 0 = 11 :

И, наконец, для последней, шестой ячейки, имеем: 1⋅ 11 + (−11)= 0 :

Задача решена, осталось только записать ответ:


Как видите, числа, расположенные во второй строке (между единицей и нулём), есть коэффициенты многочлена, полученного после деления 5x 4 +5x 3 +x 2 −11 на x −1. Естественно, что так как степень исходного многочлена 5x 4 +5x 3 +x 2 −11 равнялась четырём, то степень полученного многочлена 5x 3 +10x 2 +11x +11 на единицу меньше, т.е. равна трём. Последнее число во второй строке (ноль) означает остаток от деления многочлена 5x 4 +5x 3 +x 2 −11 на x −1.
В нашем случае остаток равна нулю, т.е. многочлены делятся нацело. Этот результат ещё можно охарактеризовать так: значение многочлена 5x 4 +5x 3 +x 2 −11 при x =1 равно нулю.
Можно сформулировать вывод и в такой форме: так как значение многочлена 5x 4 +5x 3 +x 2 −11 при x =1 равно нулю, то единица является корнем многочлена 5x 4 +5x 3 +x 2 −11.

2. Найдите неполное частное, остаток от деления многочлена

А (х ) = х 3 – 2х 2 + 2х – 1 на двучлен х 1.

Решение:

– 2

– 1

α = 1

– 1

Ответ: Q (x ) = х 2 – х + 1 , R (x ) = 0.

3. Вычислите значение многочлена А (х ) при х = 1, если А (х ) = х 3 2 х – 1.

Решение:

– 2

– 1

α = – 1

– 1

– 1

Ответ:А (– 1) = 0.

4. Вычислите значение многочлена А (х ) при х = 3, неполное частное и остаток, где

А (х )= 4 х 5 – 7х 4 + 5х 3 – 2 х + 1.

Решение:

– 7

– 2

α = 3

178

535

Ответ: R (x ) = A (3) = 535, Q (x ) = 4 х 4 + 5х 3 + 20х 2 + 60х +178.

5. Найдите корни уравнения х 3 + 4 х 2 + х – 6 = 0.

Решение:

Находим делители свободного члена ±1; ± 2; ± 3; ± 6

Здесь, а = 1 (х – 1 = х – а), а коэффициенты многочлена-делимого равны соответственно
1, 4, 1, – 6. Строим таблицу для применения схемы Горнера:

Цели урока:

  • научить учащихся решать уравнения высших степеней используя схему Горнера;
  • воспитывать умение работать в парах;
  • создать в совокупности с основными разделами курса базу для развития способностей учащихся;
  • помочь ученику оценить свой потенциал, развивать интерес к математике, умение мыслить, высказываться по теме.

Оборудование: карточки для работы в группах, плакат со схемой Горнера.

Метод обучения: лекция, рассказ, объяснение, выполнение тренировочных упражнений.

Форма контроля: проверка задач самостоятельного решения, самостоятельная работа.

Ход урока

1. Организационный момент

2. Актуализация знаний учащихся

Какая теорема позволяет определить, является ли число корнем данного уравнения (сформулировать теорему)?

Теорема Безу. Остаток от деления многочлена Р(х) на двучлен х-с равен Р(с), число с называют корнем многочлена Р(х), если Р(с)=0. Теорема позволяет, не выполняя операцию деления, определить, является ли данное число корнем многочлена.

Какие утверждения облегчают поиск корней?

а) Если старший коэффициент многочлена равен единице, то корни многочлена следует искать среди делителей свободного члена.

б) Если сумма коэффициентов многочлена равна 0, то один из корней равен 1.

в)Если сумма коэффициентов стоящих на четных местах, равна сумме коэффициентов, стоящих на нечетных местах, то один из корней равен -1.

г) Если все коэффициенты положительны, то корнями многочлена являются отрицательные числа.

д) Многочлен нечетной степени имеет хотя бы один действительный корень.

3. Изучение нового материала

При решении целых алгебраических уравнений приходиться находить значения корней многочленов. Эту операцию можно существенно упростить, если проводить вычисления по специальному алгоритму, называемому схемой Горнера. Эта схема названа в честь английского ученого Уильяма Джорджа Горнера. Схема Горнера это алгоритм для вычисления частного и остатка от деления многочлена Р(х) на х-с. Кратко, как он устроен.

Пусть дан произвольный многочлен Р(х)=а 0 х n + а 1 х n-1 + …+ а n-1 х+ а n . Деление этого многочлена на х-с – это представление его в виде Р(х)=(х-с)g(х) + r(х). Частное g(х)=в 0 х n-1 + в n х n-2 +…+в n-2 х + в n-1 , где в 0 =а 0 , в n =св n-1 +а n , n=1,2,3,…n-1. Остаток r(х)= св n-1 +а n . Этот метод вычисления и называется схемой Горнера. Слово « схема» в названии алгоритма связана с тем, что обычно его выполнение оформляют следующим образом. Сначала рисуют таблицу 2(n+2). В левой нижней клетке записывают число с, а в верхней строке коэффициенты многочлена Р(х). При этом левую верхнюю клетку оставляют пустой.

в 0 =а 0

в 1 =св 1 +а 1

в 2 =св 1 + а 2

в n-1 =св n-2 +а n-1

r(х)=f(с)=св n-1 +а n

Число, которое после выполнения алгоритма оказывается записанным в правой нижней клетке, и есть остаток от деления многочлена Р(х) на х-с. Другие числа в 0 , в 1 , в 2 ,… нижней строки являются коэффициентами частного.

Например: Разделить многочлен Р(х)= х 3 -2х+3 на х-2.

Получаем, что х 3 -2х+3=(х-2) (х 2 +2х+2) + 7.

4. Закрепление изученного материала

Пример 1: Разложите на множители с целыми коэффициентами многочлен Р(х)=2х4-7х 3 -3х 2 +5х-1.

Ищем целые корни среди делителей свободного члена -1: 1; -1. Составим таблицу:

X = -1 – корень

Р(х)= (х+1) (2х 3 -9х 2 +6х -1)

Проверим 1/2.

Х=1/2 - корень

Следовательно, многочлен Р(х) можно представить в виде

Р(х)= (х+1) (х-1/2) (х 2 -8х +2) = (х+1) (2х -1) (х 2 - 4х +1)

Пример 2: Решить уравнение 2х 4 - 5х 3 + 5х 2 - 2 = 0

Так как сумма коэффициентов многочлена, записанного в левой части уравнения, равна нулю, то один из корней 1. Воспользуемся схемой Горнера:

Х=1 - корень

Получаем Р(х)=(х-1) (2х 3 -3х 2 =2х +2). Будем искать корни среди делителей свободного члена 2.

Выяснили, что целых корней больше нет. Проверим 1/2; -1/2.

Х= -1/2 - корень

Ответ: 1; -1/2.

Пример 3: Решить уравнение 5х 4 – 3х 3 – 4х 2 -3х+ 5 = 0.

Корни данного уравнения будем искать среди делителей свободного члена 5: 1;-1;5;-5. х=1 - корень уравнения, так как сумма коэффициентов равна нулю. Воспользуемся схемой Горнера:

уравнение представим в виде произведения трех множителей: (х-1) (х-1) (5х 2 -7х + 5)=0. Решая квадратное уравнение 5х 2 -7х+5=0, получили Д=49-100=-51, корней нет.

Карточка 1

  1. Разложите на множители многочлен: х 4 +3х 3 -5х 2 -6х-8
  2. Решите уравнение: 27х 3 -15х 2 +5х-1=0

Карточка 2

  1. Разложите на множители многочлен: х 4 -х 3 -7х 2 +13х-6
  2. Решите уравнение: х 4 +2х 3 -13х 2 -38х-24=0

Карточка 3

  1. Разложите на множители: 2х 3 -21х 2 +37х+24
  2. Решите уравнение: х 3 -2х 2 +4х-8=0

Карточка 4

  1. Разложите на множители: 5х 3 -46х 2 +79х-14
  2. Решите уравнение: х 4 +5х 3 +5х 2 -5х-6=0

5. Подведение итогов

Проверка знаний при решении в парах осуществляется на уроке путем узнавания способа действия и названия ответа.

Домашнее задание:

Решите уравнения:

а) х 4 -3х 3 +4х 2 -3х+1=0

б) 5х 4 -36х 3 +62х 2 -36х+5=0

в) х 4 +х 3 +х+1=4х 2

г) х 4 +2х 3 -х-2=0

Литература

  1. Н.Я. Виленкин и др., Алгебра и начала анализа 10 класс (углубленное изучение математики): Просвещение, 2005.
  2. У.И. Сахарчук, Л.С. Сагателова, Решение уравнений высших степеней: Волгоград, 2007.
  3. С.Б. Гашков, Системы счисления и их применение.

Теорема Безу , невзирая на кажущуюся простоту и очевидность, является одной из базовых теорем теории многочленов . В данной теореме алгебраические характеристики многочленов (они позволяют работать с многочленами как с целыми числами) связываются с их функциональными характеристиками (которые позволяют рассматривать многочлены как функции).

Теорема Безу утверждает, что остаток от деления многочлена на многочлен - это .

Коэффициенты многочлена лежат в неком коммутативном кольце с единицей (к примеру, в поле вещественных либо комплексных чисел).

Теорема Безу - доказательство.

Делим с остатком многочлен P(x) на многочлен (x-a) :

Исходя из того, что deg R(x) < deg (x-a) = 1 - многочлен степени не выше нуля. Подставляем , так как , получаем .

Но наиболее важна не именно теорема, а следствие теоремы Безу:

1. Число - корень многочлена P(x) тогда и только тогда, когда P(x) делится без остатка на двучлен x-a .

Исходя из этого - множество корней многочлена P(x) тождественно множеству корней соответствующего уравнения x-a .

2. Свободный член многочлена делится на любой целый корень многочлена с целыми коэффициентами (когда старший коэффициент равен единице - все рациональные корни целые).

3. Предположим, что - целый корень приведенного многочлена P(x) с целыми коэффициентами. Значит, для любого целого число делится на .

Теорема Безу дает возможность, найдя один корень многочлена, искать дальше корни многочлена, степень которого уже на 1 меньше: если , то данный многочлен P(x) будет выглядеть так:

Теорема Безу примеры:

Найти остаток от деления многочлена на двучлен .

Теорема Безу примеры решения:

Исходя из теоремы Безу, искомый остаток соответствует значению многочлена в точке . Тогда найдем , для этого значение подставляем в выражение для многочлена вместо . Получаем:

Ответ : Остаток = 5.

Схема Горнера.

Схема Горнера - это алгоритм деления (деление схемой Горнера) многочленов, записываемый для частного случая, если частное равно двучлену .

Построим этот алгоритм:

Предположим, что - делимое

Частное (его степень, вероятно, будет на удиницу меньше), r - остаток (т.к. деление осуществляется на многочлен 1-ой степени, то степень остатка будет на единицу меньше, т.е. нулевая, таким образом, остаток это константа).

По определению деления с остатком P(x) = Q(x) (x-a) + r . После подстановки выражений многочленов получаем:

Раскрываем скобки и приравниваем коэффициенты при одинаковых степенях, после чего выражаем коэффициенты частного через коэффициенты делимого и делителя:

Удобно вычисления сводить в такую таблицу:

В ней выделены те клетки, содержимое которых участвует в вычислениях на очередном шаге.

Схема Горнера примеры:

Пусть надо поделить многочлен на двучлен x-2 .

Составляем таблицу с двумя строками. В 1 строку выписываем коэффициенты нашего многочлена. Во второй строке будем получать коэффициенты неполного частного по следующей схеме: в первую очередь переписываем старший коэффициент данного многочлена, далее, дабы получить очередной коэффициент, умножаем последний найденный на а=2 и складываем с соответствующим коэффициентом многочлена F(x) . Самый последний коэффициент будет остатком, а все предыдущие - коэффициентами неполного частного.

Ранее понятие многочлена было определено как алгебраическая сумма одночленов. Если все подобные одночлены многочлена приведены и расположены в порядке убывания степени переменной, то полученная запись называется канонической формой записи многочлена.

Определение. Выражение вида

где x – некоторая переменная, действительные числа, причем , называется многочленом степени n от переменной x . Степенью многочлена является наибольшая степень переменной в его канонической записи. Если переменная не встречается в записи многочлена, т.е. многочлен равен константе, его степень считается равной 0. Случай, когда многочлен необходимо рассматривать отдельно. В этом случае принято считать, что его степень не определена.

Примеры. многочлен второй степени,

многочлен пятой степени.

Определение. Два многочлена равны тогда и только тогда, когда у них в канонических формах при одинаковых степенях стоят одинаковые коэффициенты.

Определение . Число называется корнем многочлена , если при постановке этого числа вместо x многочлен принимает значение 0, т.е. Другими словами, будет являться корнем уравнения

Таким образом, задача отыскания всех корней многочлена и корней рационального уравнения – одна и та же задача.

Рациональные уравнения первой и второй степени решаются по известным алгоритмам. Существуют также формулы отыскания корней многочленов третьей и четвертой степени (формулы Кардано и Феррари), однако в силу их громоздкости они не входят в курс элементарной математики.

Общей идеей отыскания корней многочленов высших степеней является разложение многочлена на множители и замена уравнения равносильной ему совокупностью уравнений более низкой степени.

В предыдущих темах отмечались основные способы разложения многочленов на множители: вынесение общего множителя; группировка; формулы сокращенного умножения.

Однако способ группировки не носит алгоритмического характера, поэтому его трудно применять для многочленов больших степеней. Рассмотрим некоторые дополнительные теоремы и методы, позволяющие раскладывать на множители многочлены высших степеней.

Теорема о делении с остатком. Пусть даны многочлены , причем степень отлична от 0, и степень больше степени . Тогда существуют многочлены , такие, что выполняется равенство

Причем, степень меньше степени Многочлен называется делимым , многочлен делителем, многочлен неполным частным , а многочлен остатком .

Если остаток от деления равен 0, то говорят, что делится на нацело , при этом равенство принимает вид:

Алгоритм деления многочлена на многочлен аналогичен алгоритму деления числа на число столбиком или уголком. Опишем шаги алгоритма.

    Записать делимое в строчку, включая все степени переменной (те, которые отсутствуют, записать с коэффициентом 0).

    Записать в «уголке» делимое, включая все степени переменной.

    Чтобы найти первое слагаемое (одночлен) в неполном частном, нужно старший одночлен делимого разделить на старший одночлен делителя.

    Полученное первое слагаемое частного умножить на весь делитель и результат записать под делимым, причем одинаковые степени переменной записать друг под другом.

    Из делимого вычесть полученное произведение.

    К полученному остатку применить алгоритм, начиная с пункта 1).

    Алгоритм завершен, когда полученная разность будет иметь степень меньше степени делителя. Это – остаток.

Пример . Разделить многочлен на .

    Записываем делимое и делитель

    Повторяем процедуру

Степень меньше степени делителя. Значит, это – остаток. Результат деления запишется так:

Схема Горнера. Если делителем является многочлен первой степени, то процедуру деления можно упростить. Рассмотрим алгоритм деления многочлена на двучлен .

Пример . Разделить по схеме Горнера многочлен на . В этом случае а =2. Выпишем по шагам результаты выполнения алгоритма.

Шаг первый.
Шаг второй
Шаг третий
Шаг четвертый

Таким образом, результат деления запишем так

Замечание. Если необходимо выполнить деление на двучлен

То его преобразовывают к виду тогда . Отсюда видно, что, разделив по схеме Горнера на мы найдем Тогда искомое частное получится делением найденного на а . Остаток остается таким же.

Теорема Безу . Остаток от деления многочлена на равен значению многочлена в точке x = а , т.е. . Многочлен делится на без остатка тогда и только тогда, когда x = а является корнем многочлена .

Таким образом, найдя один корень многочлена а , можно его разложить на множители , выделив множитель , имеющий степень на единицу меньше степени . Найти этот множитель можно либо по схеме Горнера, либо делением «уголком».

Вопрос о нахождении корня решается либо подбором, либо с использованием теоремы о рациональных корнях многочлена.

Теорема. Пусть многочлен имеет целые коэффициенты. Если несократимая дробь является корнем многочлена, то ее числитель p является делителем свободного члена , а знаменатель q является делителем старшего коэффициента .

Эта теорема лежит в основании алгоритма поиска рациональных корней многочлена (если они есть).

Разложение алгебраической дроби в сумму простейших дробей

Определение Дробь, в числителе и в знаменателе которой стоят многочлены, называется алгебраической дробью .

Рассмотрим алгебраические дроби от одной переменной. Их в общем виде можно записать так: , где в числителе стоит многочлен степени n , в знаменателе – многочлен степени k . Если , то дробь называется правильной .

К простейшим алгебраическим дробям относятся правильные дроби двух видов:

Теорема. Любую алгебраическую дробь можно представить в виде суммы простейших алгебраических дробей.

Алгоритм разложения алгебраической дроби в сумму простейших дробей.

    Разложить знаменатель на множители.

    Определить количество правильных дробей и вид их знаменателей.

    Записать равенство, в левой части которого – исходная дробь, в правой – сумма простейших дробей с неопределенными коэффициентами.

    Привести дроби в правой части к общему знаменателю.

    Приравнять многочлены, стоящие в числителях дробей. Пользуясь определением равенства многочленов, составить систему линейных уравнений и решить ее, найдя неопределенные коэффициенты.

    В этой статье мы расскажем об удобной схеме решения примеров на деление многочленов. Если нам нужно вычислить коэффициент частного P n (x) = a n a n + a n - 1 x n - 1 + . . . + a 1 x + a 0 и остаток от деления многочлена на линейный двучлен x - s , то удобно будет воспользоваться схемой (методом) Горнера.

    Она заключается в создании особой таблицы и занесении в нее исходных данных:

    Числа b n , b n - 1 , b n - 2 , . . . , b 1 и будут нужными нам коэффициентами от деления P n (x) = a n a n + a n - 1 x n - 1 + . . . + a 1 x + a 0 на x - s . Остаток обозначен здесь как b 0 . Иначе можно записать решение так:

    Теперь покажем, как именно применять эту схему на практике.

    Пример 1

    Условие: разделите многочлен 2 x 4 - 3 x 3 - x 2 + 4 x + 13 на линейный двучлен х - 1 , используя схему Горнера.

    Решение

    Заполним таблицу. У нас есть s , равный единице, и коэффициенты a 4 = 2 , a 3 = - 3 , a 2 = - 1 , a 1 = 4 , a 0 = 13 .

    Ответ: получили частное, равное b 4 x 3 + b 3 x 2 + b 2 x + b 1 = 2 x 3 - x 2 - 2 x + 2 , и остаток b 0 = 15 .

    Во второй задаче мы обойдемся без подробных комментариев.

    Пример 2

    Условие: определите, можно ли разделить многочлен 2 x 3 - 11 x 2 + 12 x + 9 на двучлен x + 1 2 без остатка. Вычислите частное.

    Решение

    Заполним таблицу согласно схеме Горнера.

    В последней ячейке мы видим нулевой остаток, следовательно, разделить исходный многочлен на двучлен можно.

    Ответ: частное будет представлять из себя многочлен 2 x 2 - 12 x + 18 .

    Если b 0 = 0 , то можно говорить о делимости многочлена P n (x) = a n a n + a n - 1 x n - 1 + . . . + a 1 x + a 0 на двучлен x - s , и мы имеем корень исходного многочлена, равный s . Используя следствие из теоремы Безу, можем представить этот многочлен в виде произведения:

    P n (x) = a n a n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = = x - s (b n x n + 1 + b n - 1 x n - 2 + . . . + b 1)

    Благодаря этому схема Горнера хорошо подходит для тех случаев, когда нужно отыскать целые корни уравнений высших степеней, имеющих целые коэффициенты, или же разложить многочлен на простые множители.

    Пример 3

    Условие: решите уравнение x 3 - 7 x - 6 = 0 . Разложите многочлен слева на отдельные множители.

    Решение

    Мы знаем, что целые корни уравнения (если они есть) нужно искать среди делителей свободного члена. Запишем их отдельно 1 , - 1 , 2 , - 2 , 3 , - 3 , 6 , - 6 и проверим, используя схему Горнера.

    Из данных таблицы видно, что единица не будет входить в число корней данного уравнения.

    Дополним таблицу еще одним возможным корнем.

    А вот - 1 подходит, значит, мы можем представить исходный многочлен как x 3 - 7 x - 6 = (x + 1) (x 2 - x - 6) .

    Из этого следует, что - 1 не будет кратным (повторяющимся) корнем. Берем следующий вариант и вычисляем:

    x i коэффициенты многочленов
    a 3 = 1 a 2 = 0 a 1 = - 7 a 0 = - 6
    1 1 0 + 1 · 1 = 1 - 7 + 1 · 1 = - 6 - 6 + - 6 · 1 = - 12
    - 1 1 0 + 1 · (- 1) = - 1 - 7 + - 1 · - 1 = - 6 - 6 + (- 6) · (- 1) = 0
    - 1 1 - 1 + 1 · - 1 = - 2 - 6 + - 2 · - 1 = - 4
    2 1 - 1 + 1 · 2 = 1 - 6 + 1 · 2 = - 4

    Число 2 не входит в число корней уравнения. Дополним таблицу Горнера для х = - 2:

    x i коэффициенты многочленов
    a 3 = 1 a 2 = 0 a 1 = - 7 a 0 = - 6
    1 1 0 + 1 · 1 = 1 - 7 + 1 · 1 = - 6 - 6 + - 6 · 1 = - 12
    - 1 1 0 + 1 · (- 1) = - 1 - 7 + - 1 · - 1 = - 6 - 6 + (- 6) · (- 1) = 0
    - 1 1 - 1 + 1 · - 1 = - 2 - 6 + - 2 · - 1 = - 4
    2 1 - 1 + 1 · 2 = 1 - 6 + 1 · 2 = - 4
    - 2 1 - 1 + 1 · - 2 = - 3 - 6 + - 3 · - 2 = 0

    Минус два будет корнем исходного уравнения. Мы можем записать многочлен так:

    x 3 - 7 x - 6 = (x + 1) (x 2 - x - 6) = = (x + 1) (x + 2) (x - 3)

    Третий и последний корень уравнения будет равен трем. Закончим заполнение таблицы, взяв значения последней полученной строки в качестве коэффициентов:

    x i коэффициенты многочленов
    a 3 = 1 a 2 = 0 a 1 = - 7 a 0 = - 6
    1 1 0 + 1 · 1 = 1 - 7 + 1 · 1 = - 6 - 6 + - 6 · 1 = - 12
    - 1 1 0 + 1 · (- 1) = - 1 - 7 + - 1 · - 1 = - 6 - 6 + (- 6) · (- 1) = 0
    - 1 1 - 1 + 1 · - 1 = - 2 - 6 + - 2 · - 1 = - 4
    2 1 - 1 + 1 · 2 = 1 - 6 + 1 · 2 = - 4
    - 2 1 - 1 + 1 · - 2 = - 3 - 6 + - 3 · - 2 = 0
    3 1 - 3 + 1 · 3 = 0

    Из этого можно сделать вывод, что последняя полученная таблица, заполненная по методу Горнера, и будет решением нашего примера. Эту задачу можно было решить и делением многочлена на линейный двучлен столбиком, однако показанная здесь схема нагляднее и проще.

    Ответ: х = - 1 , х = - 2 , х = 3 , x 3 - 7 x - 6 = (x + 1) (x + 2) (x - 3) .

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter