Конспект лекций по общей химии. Ковалентная связь

3.4. Метод молекулярных орбиталей

Метод молекулярных орбиталей (МО) наиболее нагляден в его графической модели линейной комбинации атомных орбиталей (ЛКАО). Метод МО ЛКАО основан на следующих правилах.

1. При сближении атомов до расстояний химических связей из атомных орбиталей (АО) образуются молекулярные.

2. Число полученных молекулярных орбиталей равно числу исходных атомных.

3. Перекрываются атомные орбитали, близкие по энергии. В результате перекрывания двух атомных орбиталей образуются две молекулярные. Одна из них имеет меньшую энергию по сравнению с исходными атомными и называется связывающей , а вторая молекулярная орбиталь обладает большей энергией, чем исходные атомные орбитали, и называется разрыхляющей .

4. При перекрывании атомных орбиталей возможно образование и -связи (перекрывание по оси химической связи), и -связи (перекрывание по обе стороны от оси химической связи).

5. Молекулярная орбиталь, не участвующая в образовании химической связи, носит название несвязывающей . Ее энергия равна энергии исходной АО.

6. На одной молекулярной орбитали (как, впрочем, и атомной) возможно нахождение не более двух электронов.

7. Электроны занимают молекулярную орбиталь с наименьшей энергией (принцип наименьшей энергии).

8. Заполнение вырожденных (с одинаковой энергией) орбиталей происходит последовательно по одному электрону на каждую из них.

Применим метод МО ЛКАО и разберем строение молекулы водорода. Изобразим на двух параллельных диаграммах энергетические уровни атомных орбиталей исходных атомов водорода (рис. 3.5).

Видно, что имеется выигрыш в энергии по сравнению с несвязанными атомами. Свою энергию понизили оба электрона, что соответствует единице валентности в методе валентных связей (связь образуется парой электронов).
Метод МО ЛКАО позволяет наглядно объяснить образование ионов и , что вызывает трудности в методе валентных связей. На -связывающую молекулярную орбиталь катиона переходит один электрон атома H с выигрышем энергии (рис. 3.7).

В анионе на двух молекулярных орбиталях необходимо разместить уже три электрона (рис. 3.8).

Если два электрона, опустившись на связывающую орбиталь, дают выигрыш в энергии, то третьему электрону приходится повысить свою энергию. Однако энергия, выигранная двумя электронами, больше, чем проигранная одним. Такая частица может существовать.
Известно, что щелочные металлы в газообразном состоянии существуют в виде двухатомных молекул. Попробуем убедиться в возможности существования двухатомной молекулы Li 2 , используя метод МО ЛКАО. Исходный атом лития содержит электроны на двух энергетических уровнях – первом и втором (1s и 2s ) (рис. 3.9).

Перекрывание одинаковых 1s -орбиталей атомов лития даст две молекулярные орбитали (связывающую и разрыхляющую), которые согласно принципу минимума энергии будут полностью заселены четырьмя электронами. Выигрыш в энергии, получаемый в результате перехода двух электронов на связывающую молекулярную орбиталь, не способен компенсировать ее потери при переходе двух других электронов на разрыхляющую молекулярную орбиталь. Вот почему вклад в образование химической связи между атомами лития вносят лишь электроны внешнего (валентного) электронного слоя.
Перекрывание валентных 2s -орбиталей атомов лития приведет также к образованию одной
-связывающей и одной разрыхляющей молекулярных орбиталей. Два внешних электрона займут связывающую орбиталь, обеспечивая общий выигрыш в энергии (кратность связи равна 1).
Используя метод МО ЛКАО, рассмотрим возможность образования молекулы He 2 (рис. 3.10).

В этом случае два электрона займут связывающую молекулярную орбиталь, а два других – разрыхляющую. Выигрыша в энергии такое заселение двух орбиталей электронами не принесет. Следовательно, молекулы He 2 не существует.
Методом МО ЛКАО легко продемонстрировать парамагнитные свойства молекулы кислорода. С тем чтобы не загромождать рисунок, не будем рассматривать перекрывание 1s -орбиталей атомов кислорода первого (внутреннего) электронного слоя. Учтем, что p -орбитали второго (внешнего) электронного слоя могут перекрываться двумя способами. Одна из них перекроется с аналогичной с образованием -связи (рис. 3.11).

Две других p -АО перекроются по обе стороны от оси x с образованием двух -связей (рис. 3.12).

Энергии сконструированных молекулярных орбиталей могут быть определены по данным спектров поглощения веществ в ультрафиолетовой области. Так, среди молекулярных орбиталей молекулы кислорода, образовавшихся в результате перекрывания p -АО, две -связывающие вырожденные (с одинаковой энергией) орбитали обладают меньшей энергией, чем -связывающая, впрочем, как и *-разрыхляющие орбитали обладают меньшей энергией в сравнении с *-разрыхляющей орбиталью (рис. 3.13).

В молекуле O 2 два электрона с параллельными спинами оказались на двух вырожденных (с одинаковой энергией) *-разрыхляющих молекулярных орбиталях. Именно наличием неспаренных электронов и обусловлены парамагнитные свойства молекулы кислорода, которые станут заметными, если охладить кислород до жидкого состояния.
Среди двухатомных молекул одной из наиболее прочных является молекула CO. Метод МО ЛКАО легко позволяет объяснить этот факт (рис. 3.14, см. с. 18 ).

Результатом перекрывания p -орбиталей атомов O и C является образование двух вырожденных
-связывающих и одной -связывающей орбитали. Эти молекулярные орбитали займут шесть электронов. Следовательно, кратность связи равна трем.
Метод МО ЛКАО можно использовать не только для двухатомных молекул, но и для многоатомных. Разберем в качестве примера в рамках данного метода строение молекулы аммиака (рис. 3.15).

Поскольку три атома водорода имеют только три 1s -орбитали, то суммарное число образованных молекулярных орбиталей будет равно шести (три связывающих и три разрыхляющих). Два электрона атома азота окажутся на несвязывающей молекулярной орбитали (неподеленная электронная пара).

3.5. Геометрические формы молекул

Когда говорят о формах молекул, прежде всего имеют в виду взаимное расположение в пространстве ядер атомов. О форме молекулы имеет смысл говорить, когда молекула состоит из трех и более атомов (два ядра всегда находятся на одной прямой). Форма молекул определяется на основе теории отталкивания валентных (внешних) электронных пар. Согласно этой теории молекула всегда будет принимать форму, при которой отталкивание внешних электронных пар минимально (принцип минимума энергии). При этом необходимо иметь в виду следующие утверждения теории отталкивания.

1. Наибольшее отталкивание претерпевают неподеленные электронные пары.
2. Несколько меньше отталкивание между неподеленной парой и парой, участвующей в образовании связи.
3. Наименьшее отталкивание между электронными парами, участвующими в образовании связи. Но и этого бывает недостаточно, чтобы развести ядра атомов, участвующих в образовании химических связей, на максимальный угол.

В качестве примера рассмотрим формы водородных соединений элементов второго периода: BeH 2 , BH 3 , CH 4 , C 2 H 4 , C 2 H 2 , NH 3 , H 2 O.
Начнем с определения формы молекулы BeH 2 . Изобразим ее электронную формулу:

из которой ясно, что в молекуле отсутствуют неподеленные электронные пары. Следовательно, для электронных пар, связывающих атомы, есть возможность оттолкнуться на максимальное расстояние, при котором все три атома находятся на одной прямой, т.е. угол HBeH составляет 180°.
Молекула BH 3 состоит из четырех атомов. Согласно ее электронной формуле в ней отсутствуют неподеленные пары электронов:

Молекула приобретет такую форму, при которой расстояние между всеми связями максимально, а угол между ними равен 120°. Все четыре атома окажутся в одной плоскости – молекула плоская:

Электронная формула молекулы метана выглядит следующим образом:

Все атомы данной молекулы не могут оказаться в одной плоскости. В таком случае угол между связями равнялся бы 90°. Есть более оптимальное (с энергетической точки зрения) размещение атомов – тетраэдрическое. Угол между связями в этом случае равен 109°28".
Электронная формула этена имеет вид:

Естественно, все углы между химическими связями принимают максимальное значение – 120°.
Очевидно, что в молекуле ацетилена все атомы должны находиться на одной прямой:

H:C:::C:H.

Отличие молекулы аммиака NH 3 от всех предшествующих состоит в наличии в ней неподеленной пары электронов у атома азота:

Как уже указывалось, от неподеленной электронной пары более сильно отталкиваются электронные пары, участвующие в образовании связи. Неподеленная пара располагается симметрично относительно атомов водорода в молекуле аммиака:

Угол HNH меньше, чем угол HCH в молекуле метана (вследствие более сильного электронного отталкивания).
В молекуле воды неподеленных пар уже две:

Этим обусловлена уголковая форма молекулы:

Как следствие более сильного отталкивания неподеленных электронных пар, угол HOH еще меньше, чем угол HNH в молекуле аммиака.
Приведенные примеры достаточно наглядно демонстрируют возможности теории отталкивания валентных электронных пар. Она позволяет сравнительно легко предсказывать формы многих как неорганических, так и органических молекул.

3.6. Упражнения

1 . Какие виды связей можно отнести к химическим?
2. Какие два основных подхода к рассмотрению химической связи вам известны? В чем состоит их отличие?
3. Дайте определение валентности и степени окисления.
4. В чем состоят отличия простой ковалентной, донорно-акцепторной, дативной, металлической, ионной связей?
5. Как классифицируют межмолекулярные связи?
6. Что такое электроотрицательность? Из каких данных электроотрицательность рассчитывается? О чем электроотрицательности атомов, образующих химическую связь, позволяют судить? Как изменяется электроотрицательность атомов элементов при продвижении в периодической таблице Д.И.Менделеева сверху вниз и слева направо?
7. Какими правилами необходимо руководствоваться при рассмотрении строения молекул методом МО ЛКАО?
8. Используя метод валентных связей, объясните строение водородных соединений элементов
2-го периода.
9. Энергия диссоциации в ряду молекул Cl 2 , Br 2 , I 2 уменьшается (239 кДж/моль, 192 кДж/моль, 149 кДж/моль соответственно), однако энергия диссоциации молекулы F 2 (151 кДж/моль) значительно меньше, чем энергия диссоциации молекулы Cl 2 , и выпадает из общей закономерности. Объясните приведенные факты.
10. Почему при обычных условиях CO 2 – газ, а SiO 2 – твердое вещество, H 2 O – жидкость,
а H 2 S – газ? Попробуйте объяснить агрегатное состояние веществ.
11. Используя метод МО ЛКАО, объясните возникновение и особенности химической связи в молекулах B 2 , C 2 , N 2 , F 2 , LiH, CH 4 .
12. Используя теорию отталкивания валентных электронных пар, определите формы молекул кислородных соединений элементов 2-го периода.

Лекция № 4. Основы теории химической связи. Метод валентных связей

Химическая связь - это взаимодействие ядер и электронов, приводящее к образованию устойчивой совокупности атомов - молекулярных частиц или атомных агрегатов . Движущей силой образования химической связи является стремление системы к минимуму энергии при достижении атомами завершенной электронной оболочки инертного газа (s 2 или s 2 p 6). В зависимости от способа приближения системы атомных частиц к устойчивому состоянию различают три типа химической связи: ковалентную, ионную и металлическую. В теории химической связи обычно рассматривают также силы межмолекулярного взаимодействия (силы Ван-дер-Ваальса), являющиеся по своей сути физическим взаимодействием, и водородную связь, лежащую на границе физических и химических явлений.

С развитием квантово-механических представлений в теории химической связи сложились два метода описания ковалентной связи: метод валентных связей (метод ВС) и метод молекулярных орбиталей (метод МО).

Согласно методу ВС атомы, составляющие молекулу, сохраняют свою индивидуальность, а химические связи возникают в результате взаимодействия их валентных электронов и валентных орбиталей. Метод МО рассматривает молекулу как единое образование, в котором каждый электрон принадлежит молекулярной частице в целом и движется в поле всех ее ядер и электронов. Методы ВС и МО, несмотря на существенные различия в подходах к описанию молекул, хорошо дополняют друг друга. Во многих случаях они приводят в конечном итоге к одинаковым результатам.

¨ Ковалентная связь реализуется за счет образования общей электронной пары.

¨ Общая электронная пара образуется при перекрывании электронных орбиталей взаимодействующих атомов.

Степень перекрывания и прочность связи зависит от энергетического и геометрического соответствия орбиталей. При прочих равных условиях прочность связи увеличивается с уменьшением разности энергии взаимодействующих орбиталей и увеличением плотности электронного облака:

1s - 1s > 1s - 2s > 1s - 3s 1s - 1s > 2s - 2s > 3s - 3s

Необходимым условием эффективного перекрывания орбиталей является надлежащая их ориентация в пространстве и совпадение математического знака волновой функции:

Эффективное перекрывание Нулевое перекрывание Неэффективное перекрывание

Выделяют два механизма образования общей электронной пары - обменный и донорно-акцепторный. При реализации обменного механизма каждый из взаимодействующих атомов предоставляет на образование общей электронной пары неспаренный электрон, занимающий валентную орбиталь:



При образовании ковалентной связи по донорно-акцепторному механизму один из атомов (D) выступает в качестве донора, предоставляя в общее пользование неподеленную пару электронов, расположенную на одной из его валентных орбиталей. Второй атом - акцептор (А) - предоставляет на образование связи вакантную орбиталь, принимая на нее электронную пару партнера-донора:

По числу общих электронных пар, связывающих атомы, различают простые, двойные и тройные связи:

H 2 N: NH 2 или H 2 N-NH 2 HN:: NH или HN=NH N::: N или NºN

Известны немногочисленные примеры соединений, содержащих четырехкратные связи металл-металл, например,

По характеру перекрывания электронных орбиталей выделяют три типа ковалентной связи:

s-Связь ,при образовании которой перекрывание орбиталей происходит вдоль линии связи (линии, соединяющей ядра взаимодействующих атомов).

p-Связь ,при образовании которой перекрывание орбиталей происходит в плоскости, содержащей линию связи (боковое перекрывание).

d-Связь ,при образовании которой перекрывание орбиталей происходит в плоскости, перпендикулярной линии связи.

Физическими характеристиками химической связи и молекулярной частицы являются энергия связи, длина связи и валентный угол, а также полярность и поляризуемость. Энергия химической связи - это количество энергии, необходимое для ее разрыва . Такое же количество энергии выделяется при образовании связи. Так энергия диссоциации молекулы водорода составляет 435 кДж/моль, соответственно, E H-H = 435 кДж/моль. Расстояние между ядрами химически связанных атомов называется длиной связи . Измеряется длина связи в нм (нанометр, 1×10 -9 м) или пм (пикометр, 1×10 -12 м). Угол между условными линиями, соединяющими ядра химически связанных атомов (линиями связи) , называется валентным . Например, молекула воды имеет угловую форму

с валентным углом НОН 104,5° и длиной связей О-Н 96 пм. Энергия, необходимая для полной диссоциации молекулы, т.е. для осуществления процесса H 2 O ® 2H + O, составляет 924 кДж/моль, средняя энергия связи О-Н равна 462 кДж/моль (924/2).

В том случае, когда ковалентная связь образуется атомами с одинаковой электроотрицательностью, общая электронная пара в равной мере принадлежит обоим партнерам. Такая связь называется ковалентной неполярной. Если же атомы, образующие связь, отличаются по электроотрицательности, общая электронная пара смещена к атому с большей электроотрицательностью. Образующаяся связь называется ковалентной полярной. Вследствие несимметричного распределения электронной плотности двухатомные молекулы с ковалентной полярной связью представляют собой диполи - электронейтральные частицы, центры тяжести положительного и отрицательного заряда в которых не совпадают . При написании формул полярность ковалентной связи передают несколькими способами:

Количественной характеристикой полярности связи является ее дипольный момент, точнее электрический момент диполя:

где q e - заряд электрона, l - длина связи.

Единицей измерения дипольного момента является Кл×м (SI) или внесистемная единица - Дебай (D = 3,34×10 -30 Кл×м). Дипольный момент молекулы определяется как векторная сумма дипольных моментов ее связей и неподеленных электронных пар. Вследствие этого молекулярные частицы, имеющие одинаковую форму, но связи разной полярности, могут иметь различные дипольные моменты. Например:

m = 1,47 D m = 0,2 D

Важной характеристикой ковалентной связи, в значительной мере определяющей ее реакционную способность, является поляризуемость - способность связи изменять полярность (перераспределять электронную плотность) под действием внешнего электростатического поля, источником которого могут служить катализатор, реагент, растворитель и т.д. Наведенный диполь частицы связан с напряженностью внешнего поля (Е ) простым соотношением: m = aЕ . Коэффициент пропорциональности a является количественной характеристикой поляризуемости.

Ковалентная связь обладает двумя важнейшими свойствами - насыщаемостью и направленностью. Насыщаемость ковалентной связи заключается в том, что атомы способны к образовании конечного числа ковалентных связей. Причиной насыщаемости ковалентной связи является ограниченное число валентных орбиталей атома, необходимых для образования связи как по обменному, так и по донорно-акцепторному механизму.

Количественно насыщаемость ковалентной связи характеризуется ковалентностью. Ковалентность (структурная валентность - v) равна числу ковалентных связей, образованных атомом как по обменному, так и по донорно-акцепторному механизму.

Зная число орбиталей на валентных электронных уровнях, можно рассчитать максимальную теоретически возможную валентность для элементов разных периодов. У атомов элементов первого периода на валентном (первом) уровне находится только одна орбиталь (1s), поэтому водород во всех своих соединениях одновалентен. Гелий, атом которого имеет полностью завершенный первый уровень, химических соединений не образует.

У элементов второго периода валентным является второй энергетический уровень, содержащий четыре орбитали - 2s, 2p x , 2p y , 2p z . По этой причине максимальная ковалентность элементов второго периода равна четырем. Например, для азота:

v N = 3; v N = 4

Направленность ковалентной связи обусловлена стремлением атомов образовать связи в направлении наибольшего перекрывания орбиталей, что обеспечивает максимальный выигрыш энергии. Это приводит к тому, что молекулы, образованные с участием ковалентных связей, имеют строго определенную форму. Например, образование связей сера - водород в молекуле сероводорода происходит за счет перекрывания электронных облаков 1s-орбиталей атомов водорода и двух 3p-орбиталей атома серы, расположенных под прямым углом друг к другу. Вследствие этого молекула сероводорода имеет угловую форму и валентный угол HSH, близкий к 90°.

Поскольку форму ряда молекул нельзя объяснить образованием ковалентных связей с участием стандартного набора атомных орбиталей, Л. Полинг разработал теорию гибридизации атомных орбиталей. Согласно этой теории процесс образования молекулярной частицы сопровождается выравниваем длины и энергии ковалентных связей за счет процесса гибридизации атомных орбиталей, который можно представить как смешивание волновых функций базисных атомных орбиталей с образованием нового набора эквивалентных орбиталей. Процесс гибридизации требует затраты энергии, но образование связей с участием гибридных орбиталей энергетически выгодно, так как обеспечивает более полное перекрывание электронных облаков и минимальное отталкивание образующихся общих электронных пар. Условием устойчивой гибридизации является близость исходных атомных орбиталей по энергии. При этом, чем меньше энергия электронного уровня, тем более устойчивой является гибридизация.

Наиболее простой является sp-гибридизация , которая реализуется при смешивании волновых функций s- и одной р-орбитали:

Образующиеся sp-гибридные орбитали ориентированы по одной оси в разные стороны, что обеспечивает минимальное отталкивание электронных пар, поэтому угол между связями, образованными с участием данных орбиталей составляет 180°.

Участие в гибридизации s- и двух p-орбиталей приводит к образованию трех гибридных орбиталей (sp 2 -гибридизация ), ориентированных от центра к вершинам правильного треугольника. Валентный угол между связями, образованными с участием гибридных орбиталей данного типа составляет 120°.

sp 3 -Гибридизация приводит к образованию набора из четырех энергетически равноценных орбиталей, ориентированных от центра к вершинам тетраэдра под углом 109,5° по отношению друг к другу:

Рассмотрим в качестве примера строение некоторых молекул, образованных с участием sp 3 -гибридных орбиталей.

Молекула метана - CH 4

Из энергетической диаграммы атома углерода следует, что имеющихся двух неспаренных электронов недостаточно для образования четырех ковалентных связей по обменному механизму, поэтому образование молекулы метана происходит с участием атома углерода в возбужденном состоянии.

Равноценность связей и тетраэдрическая геометрия молекулы метана указывает на образование связей с участием sp 3 -гибридных орбиталей центрального атома.

Молекула аммиака - NH 3

Атомные орбитали азота в молекуле аммиака находятся в состоянии sp 3 -гибридизации. Три орбитали задействованы в образовании связей азот - водород, а четвертая - содержит неподеленную электронную пару, поэтому молекула имеет пирамидальную форму. Отталкивающее действие неподеленной пары электронов приводит к уменьшению валентного угла от ожидаемого 109,5 до 107,3°.

Наличие у атома азота неподеленной электронной пары позволяет ему образовать еще одну ковалентную связь по донорно-акцепторному механизму. Таким образом происходит образование молекулярного катиона аммония - NH 4 + . Образование четвертой ковалентной связи приводит к выравниванию валентных углов (a = 109,5°) за счет равномерного отталкивания атомов водорода:

Симметричность катиона аммония, а также геометрическая и энергетическая равноценность связей азот-водород свидетельствует об эквивалентности ковалентных связей, образованных по обменному и донорно-акцепторному механизму.

Молекула воды - H 2 O

Образование молекулы воды происходит с участием sp 3 -гибридных орбиталей атома кислорода, две из которых заняты неподеленными электронными парами и поэтому вклада в геометрию молекулы не вносят. Перекрывание одноэлектронных облаков двух гибридных орбиталей кислорода и 1s-орбиталей двух атомов водорода приводит к образованию уголковой молекулы. Отталкивающие действие двух неподеленных пар электронов уменьшает валентный угол HOH до 104,5°.

Наличие двух неподеленных пар электронов позволяет молекуле воды образовывать еще одну связь кислород - водород по донорно-акцепторному механизму, присоединяя катион водорода и образуя молекулярный катион гидроксония:

H 2 O + H + ® H 3 O +

Рассмотренные примеры иллюстрируют преимущества метода ВС, в первую очередь, его наглядность и простоту рассмотрения строения молекулы на качественном уровне. Присущи методу ВС и недостатки:

· Метод ВС не позволяет описать образование одноэлектронных связей, например, в молекулярном катионе Н 2 + .

· Метод ВС не позволяет описать образование делокализованных многоцентровых связей. Для описания молекул с делокализованными связями в рамках метода ВС вынуждено прибегают к специальному приему - резонансу валентных схем . Согласно концепции резонанса строение молекул такого типа передается не одной формулой, а наложением нескольких валентных схем (формул). Например, строение молекулы азотной кислоты, содержащей делокализованную трехцентровую связь

в методе ВС передается наложением (резонансом) двух валентных схем:

· Метод валентных связей не всегда адекватно отражает физические свойства молекул, в частности, их магнитное поведение. Например, согласно методу ВС, молекула кислорода должна быть диамагнитной, поскольку все электроны в ней спарены. Реально же молекула кислорода представляет собой бирадикал и является парамагнитной.

· Метод ВС не может объяснить спектры поглощения и окраску веществ, поскольку не рассматривает возбужденные состояния молекул.

· Математический аппарат метода валентных связей довольно сложен и громоздок.

Литература: с. 109 - 135; с. 104 - 118; с. 70 - 90

2. В результате перекрывания АО появляется общая для двух атомов электронная пара с антипараллельными (т.е. противоположными по знаку) спинами, которая обеспечивает одну химическую связь.

3. В ходе взаимодействия АО могут подвергаться гибридизации (при этом получаются ГАО - гибридные атомные орбитали).

По сути дела, МВС является более совершенным вариантом теории ковалентной связи. В МВС химическая связь так же может быть образована двумя способами:

1. Обменный механизм

2. Донорно-акцепторный механизм

Связи, образованные одними и теми же атомами различными способами абсолютно неотличимы друг от друга. Так, молекула водорода может быть получена как по обменному, так и по донорно-акцепторному механизмам:

МВС дает ясную и точную трактовку понятия валентности. Валентность - это число АО данного атома, принявших участие в перекрывании с АО других атомов по обменному или донорно-акцепторному механизмам.

Атомы могут образовывать связи как в нормальном (невозбужденном), так и в возбужденном состоянии. Переход атома в возбужденное состояние связан с перескоком валентных электронов с одного валентного подуровня на другой. При этом появляется дополнительное количество неспаренных электронов и увеличиваются валентные возможности атома по обменному механизму.

Пример: атом фосфора в нормальном состоянии имеет электронное строение 1s 2 2s 2 2p 6 3s 2 3p 3 или [Ne ] 3s 2 3p 3 . Валентные электроны фосфора (3s 2 3p 3 ) распределены по валентным орбиталям следующим образом:

Невозбужденный атом фосфора может образовать 3 связи по обменному механизму и 1 связь по донорно-акцепторному (за счет пары электронов 3s 2 ). Поэтому такой атом фосфора может иметь валентность или III или IV.

Возбужденный атом фосфора (Р * ) может образовать 5 связей по обменному механизму, то есть его валентность равна V. И, действительно, фосфор в своих соединениях проявляет валентность III (PH 3 - фосфин), IV (P - ион фосфоний), V (H 3 PO 4 - фосфорная кислота). Другие валентности для фосфора нехарактерны.

Если атомы в ходе химического взаимодействия не подвергаются гибридизации, то описание образования связей с позиций МВС осуществляется следующим образом:

а) составляется орбитальная диаграмма образования связей;

б) схематически изображается перекрывание орбиталей в пространстве.

Пример : молекула Cl 2 .

Данная диаграмма показывает, что в молекуле Cl 2 существует одна ковалентная связь, образованная по обменному механизму. Графическая формула этой молекулы: Cl - Cl .


Пространственное строение молекулы Cl 2 (изображены только 3p - орбитали):

По типу перекрывания орбиталей различаются s - связи, p - связи и d - связи.

s - cвязь образуется при “лобовом” перекрывании орбиталей, т.е. максимум перекрывания АО находится на прямой линии, соединяющей ядра атомов. s - связь самая прочная. Она может образовываться при перекрывании орбиталей любого вида:

В случае p - связи максимумы перекрывания АО находятся в 2-х областях, лежащих на плоскости, проходящей через ядра атомов:

В случае d - связи максимумы перекрывания АО находятся в 4-х областях, лежащих на 2-х взаимно перпендикулярных плоскостях, проходящих через ядра атомов. Связи такого типа могут возникать только при перекрывании d - и f - орбиталей и изучены очень мало.

Попытки применения МВС в простейшем варианте, изложенном выше для описания химического строения большинства молекул состоящих из 3 и более атомов оказались неудачными. Во многих случаях теория абсолютно не соответствовала экспериментальным данным. Для устранения этого противоречия была разработана теория гибридизации.

Гибридизация - это глубокая перестройка АО, возникающая при переходе атома из нормального в возбужденное состояние. При этом АО превращаются в ГАО (гибридные атомные орбитали). ГАО резко отличаются от исходных АО по энергии, форме и ориентации в пространстве. В то же время ГАО одного атома абсолютно одинаковы по энергии и форме между собой.

Пример : sp 3 - гибридизация атома углерода :

Все ГАО имеют форму ассиметричной гантели (т.е. вытянуты в одном направлении). Гибридизации могут подвергаться только орбитали валентных подуровней. В ходе гибридизации из n АО получаются n ГАО. ГАО участвуют в образовании только s - связей, причем эти связи более прочные, чем аналогичные s - связи с участием негибридных АО.

В настоящее время в различных веществах обнаружено около 20 различных типов гибридизации. Но чаще всего встречаются 6 типов гибридизации:

Тип гибридизации Взаимное расположение ГАО в пространстве Структурные формы
sp
sp 2
sp 3
sp 3 d 1
sp 3 d 2
spd 2

Наличие гибридизации и ее тип у того или иного атома в молекуле в общем случае предсказать нельзя.

Для однозначного решения этой задачи в большинстве случаев нужно знать:

1. Сколько связей между каждой парой атомов (первая связь - всегда s - связь, вторая и третья - p - связи).

2. Чему равны валентные углы (углы между связями) или, по крайней мере, чему равен дипольный момент молекулы (сумма дипольных моментов связей).

Пример 1 . Известно, что молекула CСl 4 неполярна (½m½ = 0). Углы между связями С - Сl одинаковы и равны 109°28¢. Все связи C - Cl одинаковы по длине и энергии. Все эти данные свидетельствуют в пользу того факта, что углерод в этой молекуле находится в состоянии sp 3 - гибридизации.

Поэтому орбитальная диаграмма выглядит следующим образом:

Пространственноестроение CCl 4 - атомы Cl образуют правильную фигуру (тетраэдр). Относительно возможной гибридизации атомов хлора ничего сказать нельзя, т.к. исходных данных недостаточно для этого.

Пример 2 . Молекула Н 2 О полярна (çm ç ¹ 0), угол между связями Н-О равен 105°30¢. Водород не может подвергаться гибридизации, так как у него всего одна валентная орбиталь. Кислород может быть негибридизированным (тогда угол между связями должен быть 90°) или иметь один из 3 типов гибридизации (другие невозможны из-за отсутствия валентных d и f - орбиталей): sp - гибридизация (валентный угол 180°), sp 2 - гибридизация (120°), sp 3 - гибридизация (109°28¢).

Так как валентный угол в молекуле воды наиболее близок к таковому для случая sp 3 - гибридизации, орбитальная диаграмма этой молекулы следующая:

Валентный угол в такой молекуле отличается от стандартного тетраэдрического (109°28¢) за счет того, что ГАО кислорода неравноценны: две из них связывающие (принимают участие в образовании связей О - Н ), а две - несвязывающие:

Несвязывающие атомные орбитали кислорода сильно отталкиваются друг от друга и это приводит к тому, что валентный угол в молекуле воды меньше на 5° относительно стандартного для sp 3 -гибридизации.

Пример 3 : Молекула СО 2 неполярна (çm ç = 0). Этого вполне достаточно, чтобы описать строение этой молекулы. Каждая связь С - О является полярной, так как атомы углерода и кислорода сильно отличаются по электроотрицательности. Чтобы молекула в целом была неполярной, необходимо чтобы связи С - О имели валентный угол равный 180°:

При сложении 2 векторов одинаковых по длине и противополжных по направлению получается ноль. Угол 180° соответствует sp -гибридизации атома углерода. Отсюда следует орбитальная диаграмма.

В методе предполагается, что химическая связь образуется двумя неспаренными электронами с антипараллельными спинами. При этом происходит обобществление электронов т. е. образуется электронная пара, принадлежащая двум атомам.

В 1927 г. немецкие ученые У. Гейтлер и Ф. Лондон провели квантово-механический расчет взаимодействия атомов водорода при образовании молекулы . В результате приближенного решения уравнения Шредингера они вывели зависимость потенциальной энергии системы от расстояния между ядрами атомов водорода (рис. II. 3). При сближении двух атомов электроны с антипараллельными спинами притягиваются одновременно двумя протонами, поэтому потенциальная энергия системы уменьшается (кривая При сближении двух атомов действуют не только силы притяжения, но и силы отталкивания. Два электрона отталкиваются друг от друга, то же наблюдается и для двух протонов. Силы отталкивания начинают преобладать при очень малых расстояниях между атомами. При некотором расстоянии между ядрами энергия системы минимальна. Система становится наиболее устойчивой, возникает химическая связь и образуется молекула водорода. Например, в молекуле водорода нм. При сближении атомов, у электронов которых спины параллельны, наблюдается только их отталкивание, и энергия системы возрастает (кривая 2). Квантово-механические расчеты показывают, что электронная плотность в системе при взаимодействии двух атомов водорода, имеющих антипараллельные спины электронов, максимальна в области, лежащей между ядрами.

В то же время электронная плотность в области между ядрами двух атомов с параллельными спинами электронов минимальна.

Механизм образования химической связи, разработанный для молекулы водорода, позднее был распространен и на другие молекулы. Рассмотрим образование химической связи в двухатомных молекулах элементов первого и второго периодов периодической системы элементов Менделеева, пользуясь методом Электронные конфигурации элементов первого и второго периодов приведены в табл. II.2. Напомним, что существует только одна -орбиталь, в то время как -орбиталей имеется три. Каждая орбиталь может содержать два электрона

Рис. II.3. Зависимость потенциальной энергии системы из двух атомов водорода от расстояния между ядрами: 1 - антипараллельные спины электронов; 2 - параллельные спины электронов

Та6лица II.2. Электронные конфигурации элементов первого и второго периодов и строение двухатомных молекул согласно методу ВС (см. скан)

с антипараллельными спинами. Значит, наибольшее число неспаренных электронов в -подуровне равно трем, как, например, у атома азота, электронная конфигурация которого

Поэтому при образовании молекулы азота обобществляются три пары электронов (тройная связь Атом кислорода, электронная конфигурация которого должен иметь два спаренных электрона на одной из трех -орбиталей. Таким образом, он обладает лишь двумя неспаренными электронами, которые участвуют в образовании химической связи. Вследствие этого в молекуле кислорода общими являются две пары электронов (двойная связь ).

Валентность.

В учении о химической связи широко используют очень важное понятие о валентности элементов. Способность атома к образованию химических связей называют в а-лентностью элемента. Количественной мерой валентности принято считать число разных атомов в молекуле, с которыми данный атом образует связи. Согласно обменному механизму метода валентность элементов определяется числом содержащихся в атоме неспаренных электронов. Для s- и -электронов - это электроны внешнего уровня, для d-элементов - внешнего и предвнешнего уровней.

Спаренные (расположенные по два на атомных орбиталях) электроны при возбуждении могут разъединяться при наличии свободных ячеек того же уровня (разъединение электронов в какой-либо иной уровень невозможно). Например, валентность (В) элементов главной подгруппы I группы равна единице, так как на внешнем уровне атомы этих элементов имеют один электрон:

Валентность элементов главной подгруппы II группы в основном (невозбужденном) состоянии равна нулю, так как на внешнем уровне нет неспаренных электронов:

При возбуждении этих атомов спаренные -электроны разъединяются в свободные ячейки -подуровня этого же уровня и валентность становится равной двум (возбужденный атом отмечен звездочкой):

Кислород и фтор во всех соединениях проявляют постоянную валентность, равную двум для кислорода и единице для фтора. Валентные электроны этих элементов находятся на втором энергетическом уровне, где нет более свободных ячеек:

В то же время сера - аналог кислорода - проявляет переменную валентность 2, 4, 6; хлор - аналог фтора - проявляет валентность 1, 3, 5, 7. Это объясняется наличием свободных d-ячеек на третьем энергетическом уровне:

При возбуждении

Для большинства d-элементов валентность в невозбужденном состоянии равна нулю, так как на внешнем уровне нет неспаренных электронов. Например, для железа

При возбуждении атома железа -электроны разъединяются и переходят на свободный -подуровень четвертого уровня, валентность становится равной двум:

Кроме электронов внешнего уровня валентными могут быть неспаренные d-электроны предвнешнего уровня, и валентность атома железа с учетом d-электронов может быть равна 3, 4, 5 и максимально 6.

Осмий - аналог железа - может проявлять максимальную валентность, равную восьми:

При возбуждении атома осмия -электроны разъединяются и переходят на свободный -подуровень шестого уровня, валентность становится равной двум. Неспаренные d-электроны увеличивают ее до шести. Кроме того, спаренные d-электроны имеют возможность разъединяться и переходить на свободный -подуровень пятого уровня, тогда максимальная валентность атома осмия становится равной восьми:

Донорно-акцепторный механизм образования ковалентной связи.

Рассмотренный механизм возникновения ковалентных связей путем обобществления неспаренных электронов двух атомов получил название обменного механизма. Образование ковалентной связи может происходить также при взаимодействии одного атома или иона с заполненной атомной орбиталью с другим атомом или ионом, имеющим вакантную (свободную) атомную орбиталь. Такой механизм образования

ковалентной связи называется донорно-акцепторным. Атом или ион, поставляющий пару электронов, называют донором, а атом или ион, к которому эта пара электронов перемещается, - акцептором. Согласно методу ковалентная связь по донорно-акцепторному механизму возникает при перекрывании вакантной орбитали акцептора с заполненными орбиталями донора или донорной группы. Поэтому донорная группа должна содержать по меньшей мере одну неподеленную пару электронов.

Рассмотрим образование химической связи по донорно-акцепторному механизму при взаимодействии молекулы аммиака с ионом водорода. Атом азота имеет на внешнем энергетическом уровне два спаренных b три неспаренных электрона.

Задача 236.
Описать с позиций метода ВС электронное строение молекулы BF 3 и иона BF 4 - .
Решение:
Электронная конфигурация валентного слоя атома бора 1s 2 2s 2 2p 1 . Электронное строение его валентного слоя в стационарном состоянии может быть представлено следующей графической схемой:

Три неспаренных электрона возбуждённого атома могут участвовать в образовании трёх ковалентных связей по обычному механизму с атомами фтора (1s 2 2s 2 2р 5), имеющими по одному неспаренному электрону, с образованием молекулы BF 3 .

Для образования иона BF 4 - должен присоединиться один ион (1s 2 2s 2 2р 6), все валентные электроны которого спарены. Связь осуществляется по донорно-акцепторному механизму за счёт пары электронов из фторид-иона и одной валентной p-орбитали атома бора.

Задача 237.
Сравнить способы образования ковалентных связей в молекулах CH 4 , NH 3 и в ионе NH 4 + . Могут ли существовать ионы CH 5 + и NH 4 2+ ?
Решение:
Электронная конфигурация атома углерода 1s 2 2s 2 2р 2 . Электронное строение его валентных орбиталей в стационарном состоянии может быть представлено следующей схемой:

Четыре неспаренных электрона возбуждённого атома углерода могут участвовать в образовании четырёх ковалентных связей по обычному механизму с атомами водорода (1s 1), имеющими по одному неспаренному, с образованием молекулы CH 4 .

Три неспаренных электрона невозбуждённого атома азота могут участвовать в образовании трёх ковалентных связей по обычному механизму с атомами водорода (1s 1), имеющими по одному неспаренному электрону, с образованием молекулы NH 3 .

Для образования иона NH 4 + к молекуле NH 3 должен присоединиться один ион H + (1s 0), имеющим одну свободную s-орбиталь. Связь осуществляется по донорно-акцепторному механизму за счёт пары электронов атома азота и одной вакантной s-орбитали атома водорода.

Углерод (1s 2 2s 2 2р 2) может образовать соединение CH 4 , но при этом валентные возможности углерода будут исчерпаны (нет неспаренных электронов, неподелённых пар электронов и валентных орбиталей на валентном энергетическом уровне), ион CH 5 + образоваться не может.

Азот (1s 2 2s 2 2р 3) может образовать соединение NH 3 (за счёт трёх неспаренных 2р-электронов) и ион NH 4 + (за счёт донорно-акцепторного механизма между молекулой NH 3 и ионом H +) , но при этом валентные возможности азота будут исчерпаны (нет неподелённых пар электронов, свободных валентных орбиталей и неспаренных электронов на валентном уровне), ион NH 5 2+ образоваться не может.

Задача 238 .
Какой атом или ион служит донором электронной пары при образовании иона BH 4 - ?
Решение:
Электронная конфигурация атома бора 1s 2 2s 2 2р 1 . Электронное строение его валентного слоя в стационарном состоянии может быть представлено следующей графической схемой:

При возбуждении атом бора переходит в состояние 1s 2 2s 1 2p 2 , а электронное строение его валентного слоя соответствует схеме:

Три неспаренных электрона возбуждённого атома бора могут участвовать в образовании трёх ковалентных связей по обычному механизму с атомами водорода (1s 1), имеющими по одному неспаренному электрону, с образованием молекулы BH 3 .

Для образования иона BH 4 - к молекуле BH 3 должен присоединиться ион H - (1s 2), имеющий на валентном уровне свободную пару электронов. Связь осуществляется по донорно-акцепторному механизму за счёт пары электронов иона и свободной (вакантной) 2р-орбитали.

Задача 239.
Объяснить с позиций метода ВС способность оксидов NО и NО 2 образовывать димерные молекулы.
Решение:
На внешнем электронном слое атома азота содержится два спаренных 2s-электрона и три неспаренных 2р-электрона (2s 2 2р 3). Атом кислорода на внешнем слое содержит пару 2s-электронов и четыре 2р-электрона, из которых два неспаренных (2s 2 2р 4).

а) В молекуле NO связь осуществляется по обычному ковалентному механизму за счёт двух неспаренных электронов атома азота и двух неспаренных электронов атома кислорода, с образованием двух ковалентных связей в молекуле. Электронная схема молекулы NO имеет вид:

Таким образом, в молекуле NO атом азота содержит один неспаренный 2р-электрон. Поэтому между двумя молекулами N 2 О 2 может образоваться ковалентная связь по обычному механизму. Валентная схема молекулы N 2 О 2 имеет вид:

В димере N 2 О 2 атомы азота и имеют восьмиэлектронную устойчивую конфигурацию. Структурная формула имеет вид:

б) В молекуле NO 2 атом азота соединён двумя ковалентными связями с одним атомом кислорода, находящимся в невозбуждённом состоянии, связь образуется за счёт двух неспаренных электронов атома азота и двух неспаренных электронов атома кислорода. Второй атом кислорода соединяется с атомом азота по донорно-акцепторному механизму за счёт пары электронов атома азота и свободной валентной 2р-орбитали атома кислорода. Молекула NO 2 содержит один неспаренный электрон у атома азота.

Валентная схема молекулы NO 2 имеет вид:

Две молекулы NO 2 могут соединиться друг с другом, образовав димер N 2 O 4 . Связь между двумя молекулами NO 2 образуется по обычному ковалентному механизму за счёт неспаренных электронов атомов азота. Валентная схема димера N 2 O 4 имеет вид:

Структурная формула димера N 2 O 2 имеет вид:

Задача 240.
Объяснить с позиций метода ВС возможность образования молекулы С 2 N 2 .
Решение:
Электронная конфигурация атома углерода 1s 2 2s 2 2р 2. Электронное строение его валентных орбиталей в стационарном состоянии может быть представлено следующей схемой:

При возбуждении атом углерода переходит в состояние 1s 2 2s 1 2р 3 , а электронное строение его валентных орбиталей соответствует схеме:

Электронная конфигурация атома азота 1s 2 2s 2 2р 3 . Электронное строение его валентных орбиталей в стационарном состоянии может быть представлено следующей схемой:

Для образования молекулы C 2 N 2 к каждому атому углерода присоединяется по одному атому азота. Связи между атомами углерода и азота образуются за счёт трёх неспаренных электронов углерода и трёх неспаренных электронов азота. Оставшийся неспаренный электрон одного атома углерода образует ковалентную связь по обычному механизму с неспаренным электроном другого атома углерода. Таким образом, в молекуле C 2 N 2 два атома углерода образуют ковалентную связь между собой и по три ковалентные связи с атомом азота по обычному механизму. Валентная схема молекулы C 2 N 2 будет иметь вид:

Структурная формула С 2 N 2 имеет вид:

Таким образом, молекула C 2 N 2 реально существует.