Капиллярные явления. Капиллярные явления в природе и технике Какие явления называют капиллярными

КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ - совокупность явлений, обусловленных действием межфазного поверхностного натяжения на границе раздела несмешивающихся сред; к К. я. обычно относят явления в жидкостях, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собств. паром. К. я.- частный случай поверхностных явлений. В отсутствие поверхность жидкости искривлена всегда. Под воздействием ограниченный объём жидкости стремится принять форму шара, т. е. занять объём с мин. поверхностью. Силы тяжести существенно меняют картину. Жидкость с относительно малой вязкостью быстро принимает форму сосуда, в к-рый налита, причём её свободная поверхность (не граничащая со стенками сосуда) в случае достаточно больших масс жидкости и большой площади свободной поверхности практически плоская. Однако по мере уменьшения массы жидкости роль поверхностного натяжения становится более существенной, чем сила тяжести. Так, напр., при дроблении жидкости в газе (или газа в жидкости) образуются капли (пузырьки) сферич. формы. Свойства систем, содержащих большое кол-во капель или пузырьков (эмульсии, жидкие аэрозоли, пены), и условия их формирования во многом определяются кривизной поверхности этих образований, то есть К. я. Большую роль К. я. играют и в зародышеобразовании при конденсации пара, кипении жидкостей, кристаллизации. Искривление поверхности жидкости может происходить также в результате её взаимодействия с поверхностью др. жидкости или твёрдого тела. В этом случае существенно наличие или отсутствие смачивания жидкостью этой поверхности. Если имеет место , т. е. молекулы жидкости 1 (рис. 1) сильнее взаимодействуют с поверхностью твёрдого тела 3, чем с молекулами др. жидкости (или газа) 2, то под воздействием разности сил межмолекулярного взаимодействия жидкость поднимается по стенке сосуда и примыкающий к твёрдому телу участок поверхности жидкости будет искривлён. Гидростатич. давление, вызванное подъёмом уровня жидкости, уравновешивается капиллярным давлением - разностью давлений над и под искривлённой поверхностью, величина к-рого связана с локальной кривизной поверхности жидкости. Если сближать плоские стенки сосуда с жидкостью, то зоны искривления перекроются и образуется мениск - полностью искривлённая поверхность. В таком капилляре в условиях смачивания под вогнутым мениском давление понижено, жидкость поднимается; вес столба жидкости вые. h 0 уравновешивает капиллярное давление Dр. В условиях равновесия

Пар) при наличии искривления поверхности. Частный случай поверхностных явлений.

При отсутствии силы тяжести жидкость ограниченной массы под воздействием поверхностного натяжения стремится занять объём с минимальной поверхностью, т. е. принимает форму шара. В условиях действия силы тяжести не слишком вязкая жидкость достаточной массы принимает форму сосуда, в который налита, и её свободная поверхность при относительно большой площади (вдали от стенок сосуда) становится плоской, так как роль поверхностного натяжения менее существенна, чем силы тяжести. При взаимодействии с поверхностью другой жидкости или твёрдого тела (например, со стенками сосуда) поверхность рассматриваемой жидкости искривляется в зависимости от наличия или отсутствия смачивания. Если имеет место смачивание, т. е. молекулы жидкости 1 (рис. 1) сильнее взаимодействуют с молекулами поверхности 3, чем с молекулами другой жидкости (или газа) 2, то под воздействием разности сил межмолекулярного взаимодействия жидкость 1 поднимается по стенке сосуда - участок жидкости, примыкающий к стенке, искривляется. Давление, вызываемое подъёмом жидкости, уравновешивается капиллярным давлением ∆р - разностью давлений над и под искривлённой поверхностью раздела. Величина капиллярного давления зависит от среднего радиуса r кривизны поверхности и определяется формулой Лапласа: ∆р = 2σ/r, где σ - поверхностное натяжение. Если граница раздела фаз плоская (r = ∞), то в условиях механического равновесия системы давления с обеих сторон границы раздела равны и ∆р = 0. В случае вогнутой поверхности жидкости (r < 0) давление в жидкости ниже, чем давление в граничащей с ней фазе и ∆р < 0; для выпуклой поверхности (r > 0) ∆р > 0.

Если стенки сосуда приблизить друг к другу, зоны искривления поверхности жидкости образуют мениск - полностью искривлённую поверхность. Образовавшаяся система называется капилляром; в нём в условиях смачивания давление под мениском понижено и жидкость в капилляре поднимается (над уровнем свободной поверхности жидкости в сосуде); вес столба жидкости высотой h уравновешивает капиллярное давление ∆р. Несмачивающая жидкость в капилляре образует выпуклый мениск, давление над которым выше, и жидкость в нём опускается ниже уровня свободной поверхности вне капилляра. Высота поднятия (опускания) жидкости в капилляре относительно свободной поверхности (где r = ∞ и ∆р = 0) определяется соотношением: h = 2σcosθ/∆pgr, где θ - краевой угол (угол между касательной к поверхности мениска и стенкой капилляра), ∆р - разность плотностей жидкости 1 в капилляре и внешней среды 2, g - ускорение свободного падения.

Искривление поверхности влияет на условия равновесия между жидкостью и её насыщенным паром: согласно Кельвина уравнению, давление паров над каплей жидкости повышается с уменьшением её радиуса, что объясняет, например, рост больших капель в облаках за счёт малых.

К характерным капиллярным явлениям относятся капиллярное впитывание, появление и распространение капиллярных волн, капиллярное передвижение жидкости, капиллярная конденсация, процессы испарения и растворения при наличии искривлённой поверхности. Капиллярное впитывание характеризуется скоростью, зависящей от капиллярного давления и вязкости жидкости. Оно играет существенную роль в водоснабжении растений, движении воды в почвах и других процессах, связанных с движением жидкостей в пористых средах. Капиллярная пропитка - один из распространённых процессов химической технологии. В системах с непараллельными стенками (или капиллярах конического сечения) кривизна менисков зависит от расположения в них граничных поверхностей жидкости, и капля смачивающей жидкости в них начинает двигаться к мениску с меньшим радиусом (рис. 2), т. е. в ту сторону, где давление ниже. Причиной капиллярного передвижения жидкости может служить и разница сил поверхностного натяжения в менисках, например при существовании градиента температуры или при адсорбции поверхностно-активных веществ, снижающих поверхностное натяжение.

Капиллярной конденсацией называют процесс конденсации пара в капиллярах и микротрещинах пористых тел, а также в промежутках между сближенными твёрдыми частицами или телами. Необходимое условие капиллярной конденсации - наличие смачивания поверхности тел (частиц) конденсирующейся жидкостью. Процессу капиллярной конденсации предшествует адсорбция молекул пара поверхностью тел и образование менисков жидкости. В условиях смачивания форма менисков вогнутая и давление р насыщенного пара над ними ниже, чем давление насыщенного пара р 0 при тех же условиях над плоской поверхностью. Т. е. капиллярная конденсация происходит при более низких, чем р 0 , давлениях.

Искривление поверхности жидкости может существенно влиять на процессы испарения, кипения, растворения, зародышеобразования при конденсации пара и кристаллизации. Так, свойства систем, содержащих большое количество капель или пузырьков газа (эмульсий, аэрозолей, пен), и их формирование во многом определяются капиллярными явлениями. Они лежат также в основе многих технологических процессов: флотации, спекания порошков, вытеснения нефти из пластов водными растворами поверхностно-активных веществ, адсорбционного разделения и очистки газовых и жидких смесей и т. п.

Впервые капиллярные явления были исследованы Леонардо да Винчи. Систематического наблюдения и описания капиллярные явления в тонких трубках и между плоскими, близко расположенными стеклянными пластинами провёл в 1709 Ф. Хоксби, демонстратор Лондонского королевского общества. Основы теории капиллярных явлений заложены в трудах Т. Юнга, П. Лапласа, а их термодинамическое рассмотрение осуществил Дж. Гиббс (1876).

Лит.: Адамсон А. Физическая химия поверхностей. М., 1979; Роулинсон Дж., Уидом Б. Молекулярная теория капиллярности. М., 1986.

А. М. Емельяненко, Н.В. Чураев.

Капиллярность (от лат.Capillaris - волосяной ) - физическое явление, заключающееся в способности жидкостей изменять уровень в трубках, узких каналах произвольной формы, пористых телах. Поднятие жидкости происходит в случаях смачивания каналов жидкостями, например воды в стеклянных трубках, песке, грунте и т. п. Понижение жидкости происходит в трубках и каналах, не смачиваемых жидкостью, например, ртуть в стеклянной трубке. На основе капиллярности основана жизнедеятельность животных и растений, химические технологии, бытовые явления (например, подъём керосина по фитилю в керосиновой лампе, вытирание рук полотенцем). Капиллярность почвы определяется скоростью, с которой вода поднимается в почве и зависит от размера промежутков между почвенными частицами. Капиллярами называются тонкие трубки, а также самые тонкие сосуды в организме человека и других животных.

Особенно хорошо наблюдается искривление мениска жидкости в тонких трубках, называемых капиллярами. Если в сосуд с жидкостью опустить капилляр, стенки которого смачиваются жидкостью, то жидкость поднимается по капилляру на некоторую высоту h (рис.50.1). Это объясняется тем, что искривление поверхности жидкости вызывает дополнительно молекулярное давление. Если поверхность выпуклая и имеет сферическую форму, то добавочное давление составит

Рисунок 50.1

В случае выпуклого мениска (r > 0) суммарное давление больше атмосферного и жидкость опускается по капилляру. Если мениск вогнутый (r < 0), суммарное давление меньше атмосферного и жидкость поднимается по капилляру. Жидкость поднимается (или опускается) до тех пор, пока гидростатическое давление р = ρqh столба жидкости высотой h не компенсирует добавочное (Лапласовское) давление р л. (Лаплас установил зависимость этого давления от формы мениска.) В этом случае

где ρ – плотность жидкости; g – ускорение свободного падения, r - радиус капилляра, R – радиус кривизны мениска.

Высота поднятия (глубина опускания) жидкости в капилляре:

.

§ 51. Явление капиллярности в быту, природе и технике

Явление капиллярности в быту играет огромную роль в самых разнообразных процессах, происходящих в природе. Например, проникновение влаги из почвы в растения, в стебли и листья обусловлено капиллярностью. Клетки растения образуют капиллярные каналы, и чем меньше радиус капилляра, тем выше по нему поднимается жидкость. Процесс кровообращения тоже связан с капиллярностью. Кровеносные сосуды являются капиллярами.

Особенно большое значение имеет капиллярность почвы. По мельчайшим сосудам влага из глубины перемешивается к поверхности почвы. Если хотят уменьшить испарение влаги, то почву рыхлят, разрушая капилляры. С целью увеличения притока влаги из глубины почву укатывают, увеличивая количество капиллярных каналов. В технике капиллярные явления имеют большоезначения в процессах сушки, в строительстве.

§ 52. Давление под искривленной поверхностью жидкости

Сферическая выпуклая поверхность производит на жидкость дополнительное давление, вызванное силами внутреннего натяжения, направленными внутрь жидкости, ,R – радиус сферы. Если поверхность жидкости вогнутая, то результирующая сила поверхностного натяжения направлена из жидкости и давление внутри жидкости .

Избыточное давление внутри мыльного пузыря радиуса R вызывается действием обоих поверхностных слоев тонкой сферической мыльной пленки:

Рисунок 52.1

В общем случае избыточное давление для произвольной поверхности жидкости описывается формулой Лапласа:

, (52.1)

где и- радиусы кривизны двух любых взаимно перпендикулярных сечений поверхности жидкости в данной точке.

Радиусы кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости.

Искривление поверхности жидкости у краев сосуда особенно отчетливо видно в узких трубках, где искривляется вся свободная поверхность жидкости. В трубках с узким сечением эта поверхность представляет собой часть сферы, ее называют мениском . У смачивающей жидкости образуется вогнутый мениск (рис. 1, а), а у несмачивающей - выпуклый (рис. 1, б).

Так как площадь поверхности мениска больше, чем площадь поперечного сечения трубки, то под действием молекулярных сил искривленная поверхность жидкости стремится выпрямиться.

Силы поверхностного натяжения создают дополнительное (лапласово) давление под искривленной поверхностью жидкости.

Для расчета избыточного давления предположим, что поверхность жидкости имеет форму сферы радиуса R (рис. 2. а), от которой мысленно отсечен шаровой сегмент, опирающийся на окружность радиуса .

На каждый бесконечно малый элемент длины этого контура действует касательная к поверхности сферы сила поверхностного натяжения, модуль которой . Разложим вектор на две составляющие силы . Из рисунка 2, а видим, что геометрическая сумма сил для двух выделенных диаметрально противоположных элементов равна нулю. Поэтому сила поверхностного натяжения направлена перпендикулярно плоскости сечения внутрь жидкости (рис. 2, в) и модуль ее равен

Избыточное давление, создаваемое этой силой

где - площадь основания сферического сегмента. Поэтому

Если поверхность жидкости вогнутая, то сила поверхностного натяжения направлена из жидкости (рис. 2, б) и давление под вогнутой поверхностью жидкости меньше, чем под плоской, на ту же величину . Эта формула определяет лапласово давление для случая сферической формы свободной поверхности жидкости. Она является частным случаем формулы Лапласа, определяющей избыточное давление для произвольной поверхности жидкости двоякой кривизны:

где - радиусы кривизны двух любых взаимно перпендикулярных нормальных сечений поверхности жидкости. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости. Для цилиндрической поверхности избыточное давление .

Если поместить узкую трубку (капилляр ) одним концом в жидкость, налитую в широкий сосуд, то вследствие наличия силы лапласова давления жидкость в капилляре поднимается (если жидкость смачивающая) или опускается (если жидкость несмачивающая) (рис. 3, а, б), так как под плоской поверхностью жидкости в широком сосуде избыточного давления нет.

Уверены ли вы, что понимаете, каким образом работает обычное полотенце? Или почему клей склеивает поверхности? Или почему горит свечка? А почему с мылом руки мыть намного эффективнее, чем без мыла? Ответы на все эти вопросы вы получите на данном уроке. Потому что все они, так или иначе, связаны со смачиванием поверхностей и капиллярными явлениями.

2. Зная коэффициент поверхностного натяжения воды и ее плотность, определите диаметр обычной медицинской пипетки по высоте столбика воды, поднимающегося по пипетке без резинового колпачка.

3. Рассмотрите следующие вопросы и ответы на них:

Список вопросов-ответов

Вопрос: Как капиллярный эффект зависит от длины трубки?

Ответ: Капиллярный эффект никак не зависит от длины трубки. Посмотрите на формулу для определения высоты поднятия жидкости в трубке. В эту формулу не входит длина трубки.

Вопрос: Чем отличается процесс смачивания на Земле и в космическом корабле?

Ответ: Ничем, поскольку процесс смачивания происходит за счет сил взаимодействия молекул жидкости, а они не зависят от наличия или отсутствия веса.

Вопрос: Как еще можно пронаблюдать капиллярные явления на опыте?

Ответ: Возьмите шнурок от ботинка и опустите его одним концом в стакан с водой. Через некоторое время вода поднимется по тонким волокнам шнурка, и весь шнурок окажется мокрым.

Вопрос: Почему нельзя сделать «вечный двигатель», который работал бы на капиллярном эффекте?

Ответ: Действительно, кажется, что возможно построить вечный двигатель на капиллярном эффекте, если взять трубочку высоты, меньшей, чем высота столбика жидкости. Однако капелька сверху трубки не будет стекать по ней, поскольку ее будут удерживать те же силы поверхностного натяжения, которые ее поднимали. Поэтому такой «вечный двигатель» не будет работать.

Вопрос: Как будет вести себя капля в капилляре переменной толщины?

Ответ: Если жидкость смачивает капилляр, она будет двигаться в сторону уменьшения толщины капилляра, если же жидкость несмачивает капилляр, то она будет двигаться в сторону увеличения толщины капилляра. (Подробное обоснование см. И.М. Гельфгат, Л.Э. Генденштейн, Л.А. Кирик. 1001 задача по физике с указаниями и решениями, задача 10.40 )